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A heretofore unavailable double Fourier series based approach, for obtaining
non-separable solution to a system of completely coupled linear rth order partial differential
equations with constant coefficients and subjected to general (completely coupled) boundary
conditions, has been presented. The method has been successfully implemented to solve
a class of hitherto unsolved boundary-value problems, pertaining to free and forced
vibrations of arbitrarily laminated anisotropic doubly curved thin panels of rectangular
planform, with arbitrarily prescribed (both symmetric and asymmetric with respect to the
panel centerlines) admissible boundary conditions and subjected to general transverse
loading.

Existing solutions such as those due to Navier or Levy are based on the well-known
method of separation of variables. Such solutions represent particular solutions whenever
the method of separation of variables work, and when these particular solution functions
fortuitously satisfy the boundary conditions. For derivation of the complementary solution,
the complementary boundary constraints are introduced through boundary discontinuities
of some of the particular solution functions and their partial derivatives. Such discontinuities
form sets of measure zero.

Various cases of lamination, geometry and dynamic response (forced and free vibrations)
of a class of thin anisotropic laminated shells (curved panels) have been shown to follow
from the above. Six sets of boundary conditions are used to illustrate the present method for
the derivation of complementary solutions. Navier-type solutions whenever available form
special cases of the present general solution.

© 2002 Elsevier Science Ltd.

1. INTRODUCTION

Many boundary-value problems of mathematical physics, with domains of rectangular
planform, are represented by systems of highly coupled linear partial differential equations
(PDE) with constant coefficients, where the prescribed boundary conditions can also be
quite general. Various subclasses of the general system, such as r =8, 6, 4, 2 are often
encountered in the problems of structural mechanics. For example, a subclass, represented
by a system of completely coupled linear fourth order PDEs with constant coefficients, can
be treated, without much loss of generality, as a representative of the above. The boundary
conditions in this case may contain at the most third derivatives. The objective of the
present study is to present a general method of solution to a general linear system of
completely coupled PDEs of rth (r = even) order, which is subject to general admissible
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(prescribed) boundary conditions up to the order » — 1, using double Fourier series, which
may be continuous or discontinuous at an edge. The present study is motivated by the need
to find exact (in the limit) double Fourier series solutions to the problems of arbitrarily
laminated thin and thick doubly curved, cylindrical or flat panels (open shells), with
arbitrary boundary conditions.

A detailed literature search (see e.g., reference [1]) reveals that a vast majority of the
existing studies, on obtaining exact solutions are largely restricted to Navier- or Levy-type
particular solutions alone. In these studies, solutions are usually assumed in the form of
a double Fourier series, such that either all four (Navier) or two opposite (Levy-type
solution) boundary conditions are satisfied a priori. These assumed solutions are then
substituted into the governing partial differential equations, which yield a set of a system of
linear albegraic equations in terms of as many unknown Fourier coefficients for each
combination of m, n, where m and n denote the wave numbers (i.e., number of terms of the
Fourier series). This approach has been successful only in the case of cross-ply and
homogeneous orthotropic/isotropic curved panels or flat plates of rectangular planform
(see references [2, 3]), with the SS3-type simply supported boundary conditions, and
antisymmetric angle-ply rectangular plates with the SS2-type boundary conditions
prescribed at all four edges (Navier) or two opposite edges (Levy). Such solutions are based
on the well-known method of separation of variables, which does not work even for
a symmetric angle-ply plate because of the presence of bending-twisting coupling rigidities,
D¢ and D, (see reference [2]), let alone arbitrarily laminated plates and all shells with the
exception of cross-ply curved panels. This is because the variables are, in general, not
separable, and more important, boundary conditions are not satisfied a priori. The primary
objective of the present investigation is to bridge this long-standing analytical gap.

Chaudhuri [1] recently presented a double Fourier series approach for the solution to
a system of completely coupled linear second order partial differential equations (PDE) with
constant coefficients, satisfying Dirichlet, Neumann and arbitrary (mixed) admissible
boundary conditions. This approach has been applied by Chaudhuri and Abu-Arja [4, 5],
and Chaudhuri and Kabir [6, 7] to solve the FSDT (first order shear deformation theory)-
based problems of (1) doubly curved moderately thick panels of antisymmetric angle-ply,
and (2) homogeneous isotropic (metallic) and general cross-ply constructions respectively.
Special cases of flat isotropic and cross-ply panels were also presented by Chaudhuri and
Kabir [8, 9]. The underlying mathematical principle is concerned with well-posedness or
lack thereof of the Fourier-type formulation, and the existence of the resulting series
solution. This kind of ill-posedness can be removed by the addition of mathematical
“structures” to the formulation, which, for a system of coupled second order PDEs, is
accomplished through the introduction of certain constraints [1], termed here as the
complementary boundary constraints. However, it is worthwhile to note that the levels of
ill-posedness in the Fourier formulations of systems of coupled fourth or higher order PDEs
are vastly more complex compared to their second order counterpart. Consequently,
significantly more complex mathematical “structures” through the introduction of
additional constraints are needed in order to obtain Fourier-type solutions for such
problems, which is the primary objective of the present investigation. Additionally,
although the boundary-discontinuous Fourier series theory has been expounded earlier by
Hobson [10] and Carslaw [11], and the method has been applied by other investigators,
such as Green [12], Winslow [13], and Whitney [14, 15], the criteria determining as to
when the boundary Fourier series are needed or not needed have never been clearly spelled
out. Second and more important, the boundary-discontinuous Fourier method has never
been applied to the problem of a plate/shell subjected to asymmetric (with respect to panel
centerlines) boundary conditions, which along with the general lack of non-separable
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Fourier solution has so far remained an enigma in the literature. A clear exposition of this
important issue for completely coupled systems of rth order PDEs, subjected to completely
coupled general admissible boundary conditions is the subject matter of the present
investigation.

The present study will obtain, in a direct manner, the most general solutions to the
boundary-value problems of a system of completely coupled rth order PDEs, with constant
coefficients and subjected to completely coupled admissible boundary conditions—a
general self-adjoint linear differential system. This study first presents a method for
non-separable particular (double Fourier series) solutions. Care is taken of the
discontinuities of the particular functions or their derivatives at the boundary, which will
yield additional unknown coefficients, i.e., the appropriate boundary Fourier coefficients,
through introduction of complementary and admissible boundary constraints, so that the
number of equations will finally become equal to the number of unknown coefficients.

Various cases of lamination, geometry and dynamic response (forced and free vibrations)
of a class of thin anisotropic laminated shells (curved panels) are shown to follow from the
above. Six sets of boundary conditions are used to illustrate the present method for
derivation of complementary solutions. Navier-type solutions whenever available, are
shown to form special cases of the present general solution.

2. STATEMENT OF THE PROBLEM

We consider the following system of completely coupled rth order (r = 1, 2, ...) partial
differential equations with constant coefficients representing a linear undamped
elasto-dynamic system:

Liju; = a;ju; + by x + Cijat e + dijiamWy kim + Cijiamnjamn + -+ = Ci — fi
fori,j=1,2,....N; k.,Lmmn,... =1,2, (1)
where a °, followed by subscripts k, [, m, n denotes partial differentiation with respect to
general (curvilinear) spatial co-ordinates x;, x,. u; denotes the time-dependent displacement

(including rotation) component, while C; and f; represent the inertia term and periodic
forcing function, respectively, and are written in the form

C; = mju;,, (nosum on eitherjor);j=1,2,...,N, (2a)
f}(xlax27 T):qj(x1>x2)eiwra i:\/ - 15.]: 17 27"'5N> (2b)
where 7 and @ denote time and angular frequency respectively. It then follows that
u}(xla X2, T):uj(xla-XZ)eiwra i:\/ - 19]: 19 23"'9N9 (33)
Ci=Cie", i=/—1j=12,...,N, (3b)
with
C;=— w?*mju; (no sumon j), j =1,2,...,N. (30)

The above operation reduces the linear elasto-dynamic system, given by equation (1) to that
of a boundary-value problem (BVP), to be solved in the frequency domain, in conjunction
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with prescribed boundary conditions given below. In the absence of the periodic forcing
function (i.e., the free vibration case), the BVP is concerned with determination of the
eigenvalues and eigenfunctions. The linear partial differential operator, L,
(i,j=1,2,...,N), is defined in such a way that (1) its inverse exists and is unique, (2) the
adjoint operator exists, and (3) the Fredholm alternative theorem holds [16]. It follows from
Sobolev’s theorem and the homogeneous boundary conditions, which determine the
domain of the operator L;;, when applied at an edge, x, = X, where X, is a constant, can, in
general, take the form

ijs

Bzxijuj

= aPu; 4+ b w4 g0 + AU, + -+ = 0 at an edge x, = constant,

forao=1,2,...r2(r=even); i,j=1,2,...,N; k,Lm, ... =p,t, 4)

where p, t denote the directions normal and tangential to the edge, x, = constant. For
example, when p = 1, t = 2 and vice versa. The above are referred to as general or mixed
boundary conditions, where all the unknown dependent variables (i.e., response functions)
and their derivatives are completely coupled. In equations (1) and (4),
Qijy bijis Cijits -+ s L‘ZJ), b;‘fj’k, ..., are constant coefficients. For r = even, although the total
number of boundary conditions prescribed at an edge is /2, the boundary conditions can
contain normal derivatives of order r — 1 at the most. The above boundary conditions arise
from a variational principle such that equations (1) and (4) form a self-adjoint differential
system.

3. METHOD FOR SELECTION OF PARTICULAR SOLUTION

Since the particular solution depends on the loading, g;(x;, x,) is first expanded in the
form of

q x19x2 Z ql (xl x2)_Q§fr)mfr£IS)(xlax2) l:1)7N9S:17’4 (5)
The most general non-separable particular solution to the problem, represented by

equations (1) and (2), is then assumed in the form

4
uf(xla XZ) = Z u;',(S)(xla XZ) U(S) rslsn)(xlz x2)> s = 1) ceey 4 (6)

jmn
s=1

It may be noted that Finstein’s summation convention has been used on subscripts m, n, and
superscript, s, except when “no sum” is mentioned.

(1)(X1a 2) = U(,:n)n f(l)(xb X5) Z Z U;’rln)n sin (o, x1) sin(,X2), (7a)
m=1n=1
u‘z)(xl, ) = Ujfn)n F2(xy, x,) = Z Z Uﬁfn)ncos X 1) COS(BpX2), (7b)

m=0n=0
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M(S)(xl’ ) U(J?n)n f(s)(xlaXZ Z Z Uﬁ?n)nsnl(amxl) Cos(ﬁnXZ)a (7C)
m=1n=0

uP(x1, X2) = Ul fid (X1, X2) = Z Z U cos(o, X 1) sin(B,x2) (7d)
m=0n=1

forj=1,2,...,N with o, = mn/a, [, =nn/b.

Term by term partial differentiation of the assumed particular solution functions given by
equations (6, 7) and substitution into the governing partial differential equations (1), and
finally, equating the coefficients of £ (xy, x,) for s = 1,...,4,and i,j = 1, 2, ..., N, will yield

N(@mn + 2m + 2n + 1) equations for arbitrary m, n in terms of as many unknown Fourier
coefficients, F }f,f,,, s=1,...,4, and j=1,2,...,N, which can easily be evaluated. The
assumed solution, given by equations (6, 7), would represent the complete solution,
provided it satisfies the prescribed boundary conditions, as it happens in the case of the
available Navier solutions. However, in most cases of practical interest, the assumed
particular solution would fail to satisfy one or more of the prescribed boundary conditions,
which when satisfied would provide the complementary solution to the problem under
consideration.

4. METHOD OF DERIVATION OF COMPLEMENTARY SOLUTION

4.1. BOUNDARY CONDITIONS AND THE TOTAL NUMBER OF EQUATIONS

The first task here is to identify the total number of equations available from satisfying
the prescribed boundary conditions. In order to accomplish this, the same procedure as
applied to the case of the governing partial differential equations will be followed.
Substitution of the assumed particular solution functions given by equations (6, 7) and their
partial derivatives obtained by term-wise differentiation (ie., ignoring the boundary
discontinuities at this point) into the general or mixed type of prescribed boundary
conditions given by equation (4), yields

sin(o,, xq) sin(B,x,){@D UL —pP o UWD — pir)

aij ~ jmn aij Jjmn aij2

BUR ) o2y

Jjmn m]l jmn

”MS

¢ (1) (p) (p) (2) am 4
al122 n Ujmn ( ai clejzl) mﬁn U}mn ocllllla U;m)n di(ljzzzﬁz' ;?n)n
+ 67(1’) 7(p) J(p) 3) P) ( 7
(d512 + diiiag + diian1) “mﬁntmn d;520 + daf}ZlZ + da(fj)zm)“mﬁz U;?n)n )
o0 o0
= 717(2) H(p) (4) 3) —(17) 2
+ z Z 08 (04, X 1) cOS (B, X2) { Waij Ujmn baul Ujmn aij2 P UJm" = Caij110m Uim)n

m=0n=0

—_ ¢ p2r7(2) (p) (1) 7(p)
CoujZZﬁ Ujmn + (cau]lZ + CWJZl)Ofmﬁn U}mn + dafjllla U(S) + do(uJZZZﬁn U(4)

Jmn Jjmn

d ) 20 @ _ (@ =
— (e + i) + A1) a2 U — (o +d5 05 + AP0 )0 f2UD, 4+ -0}

Jjmn

$in (o, X 1) COS(fpX2) {a(p) U — b(p)la U® 4 b(p)zﬂn U _ &) 102 2 3

aij ~ jmn aij Jjmn aij Jjmn oa]l jmn

_l’_
ﬁMs
M8

1n=0
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¢ 2y ) 4 4 (2) 7(p) 37
11122ﬁ U]mn m}lZ“mﬁ U() +C§(’;J)21 mﬁ U() o(zfj)lll Ujmn daljZZZB U]mn

jmn Jmn

aw 7@ 2 (1 7(p)
= xij112 +dau121 +daz/211) mﬁnUJmn (dmjlzz +d;lpj)212 +da11221)(xmﬁn U®» 4 }

]mn

o0 [ee]
+ Z Z COS (0t X1) 51n(ﬁ,,x2)1a(”)U(4) —l—b(p)loc U _ aa,zﬁn U _ &) o 2 &

aij ~ jmn aij Jjmn Jjmn 11]1 1 Jjmn
m=0n=1

_al “) 2(p) 3 7
cal]22ﬂn Ujmn - ( aijl12 + C;I:jzl)amﬁ Ugm)n — d;ulllo{ U(l) d;fj)zzzﬁ?’ U(z)

Jmn Jjmn

dw qw 7w @ _ (gw <
+ (i + A0, + Ayt 1) om P Usr — (dF) 5, + dd, ., + APy, )0mB2UL 4 )

Jjmn

- 0. ®)

Applying the boundary conditions at the edges x; = 0, a, to equation (8), and equating
the coefficients of cos(f,x,) and sin(f,x,) to zero will yield 4n + 2 equations for each
a=1,2,...,r/2;i=1,2,...,N; ie, rN(2n + 1) equations for a system of rth order PDEs.
Similar operations at the edges x, = 0, b will yield »N(2m + 1) equations. Therefore, the
total additional equations arising out of satisfying the general or mixed boundary
conditions at the edges will number 2rN(m + n + 1).

4.2. COMPLEMENTARY BOUNDARY CONSTRAINTS AND THE ASSOCIATED BOUNDARY
DISCONTINUITIES

For derivation of the complementary solution, the complementary boundary constraints
play as important a role as the (prescribed) admissible boundary conditions. The
complementary boundary constraints enter into the picture through boundary
discontinuities of some of the particular solution functions, assumed in the form of
equations (6, 7) and their partial derivatives. In order for this method to furnish a complete
solution to the type of boundary-value problems given by equations (1-4), 2rN(m + n + 1),
additional unknown coefficients must be furnished by the complementary boundary
constraints. For a system of fourth order completely coupled PDEs, this number reduces to
8N(m + n + 1) additional unknown coefficients. The admissible boundary constraints,
which are equalities, are conjugates of the associated complementary boundary constraints,
which are inequalities. They are selected at an edge in a direction normal to that edge in
order to guarantee the self-adjointness of the corresponding one-dimensional differential
system.

The prescription of the associated complementary boundary constraints at an edge
implies that in order for equation (4) to yield the required number of equations at each of
the four edges, not all of the r(r + 1)/2 quantities for each i=1,2,....N —u{®, uf’,
ul), ul ul), ul . ...,s=1,...,4—can be permitted to vanish at an edge, x, = X, because
that will reduce equation (4) to identities. Assignment of associated complementary
boundary constraints at an edge results in “ordinary” discontinuities of the solution
functions and/or their partial derivatives at that edge. In contrast, prescription of the
admissible boundary constraints dictates that vanishing of some of them must be permitted,
which includes but is not limited to the prescribed geometric boundary conditions, and
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which must not be regarded as violations of the physics of the problem. Assignment of
admissible boundary constraints at an edge insures continuity of the solution functions
and/or their partial derivatives at that edge. As a first step, admissible boundary constraints
are assumed to be absent, and only complementary boundary constraints are present, which
implies that vanishing of both the assumed solution functions and their partial derivatives
of up to (r — 1)th order at an edge can be regarded as violations of the physics of the
problem, resulting in “ordinary” discontinuities at that edge. In what follows, the procedure
is illustrated for the case of a system of completely coupled second (r = 2) and fourth order
(r = 4) PDEs, then extended to a system of completely coupled sixth order (r = 6) PDEs and
is finally generalized to the case of rth order.

Winslow [13], following Hobson’s [10] lead, discussed the mathematical conditions of
differentiation, of functions and their partial derivatives represented by ordinary Fourier
series, in the presence of ordinary discontinuities and has concluded that unless additional
conditions, imposed by term-wise differentiation are fulfilled, the hypothetical
representation by Fourier series may not have sufficient generality to satisfy all the required
conditions and furnish a solution. A series obtained by differentiating a convergent Fourier
series (here a double Fourier series), u Nx1, X,), i=1,...,N, s=1,...,4, given by
equations (6 , 7) is, in general, not convergent nor is the series so obtained necessarily the
Fourier series corresponding to the particular partial derivative of u!(xy, x,), i = 1,..., N
s=1,...,4. In general, uf”(x 1, X,) is a bounded function, which is piecewise continuous (i.e.,
continuous except for a finite number of ordinary discontinuities, d = d™, in the direction
of x, at x = x,,); in the problem under investigation, d = d™ = 2 at the most. The partial
derlvatlves u(s) (X1, X2), p=1,2, are assumed to be Lebesgue integrable in the domain
(0, a) x (0, b) and also, if these have lines of infinite discontinuity (e.g., Dirac Delta function),
such lines form reducible sets. This is consistent with there being a set of lines of zero
measure at which uﬁ.f;(xl, X,), p = 1, 2, has no definite value. Further details relating to the
discontinuities in the particular solution functions and their first partial derivatives are
available in Appendix A of Chaudhuri [1]. Discontinuities of higher derivatives can be
similarly dealt with, and will not be discussed here in the interest of brevity. Let F©®(x,, x,),
s=1,...,4, denote a function, uﬁ.s’(xl, Xx,) or any of its derivatives. As an example,
FY(x,, x,), which is defined to be an odd function with respect to both x; and x, will be
considered:

F(l)(— X1, Xp) = — F(l)(xl, X), F(l)(xu —X3)=— F(l)(xla X,). )

The half-range double Fourier series expansion for the function and its two first partial
derivatives are

FD(xq, x5) Z Z AV sin (o, x;) sin(B,x2), (10a)

FP(x1,x2) =), Y B cos(o,x)sin(,x,), (10b)
m=0n=1

FO(xy,x5) = ) Z C'sin (o, x1) cos(B,x,), (10c)

m=1n=0
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wherein

4 a rb
AL = —bf J FO(xy, x,)sin(o,x) sin(f,x,)dx; dx, formn=1,2,...,00, (11a)
an Jo Jo

4
By = s Al + f {FD(a — 0, x,)( — 1" — FD(0 + 0, x,)} sin(B,x) dx

formn=1,2,...,00, (11b)

2 b
B{) = —bf {FW(a — 0, x5) — FP(0 + 0, x,)} sin(B,x5)dx, forn=1,2,...,00, (11c)
a

0
4
Cl)=p,AY + o J {FO(xy, b — 0)(— 1)" + FP(xy, 0 + 0)} sin(o,, ;) dx;

formn=1,2,...,00, (11d)

2 b
Ccl) = EJ {FO(xy, b —0) — FY(xy,0 + 0)} sin(e,,x;)dx; form=1,2,...,00. (11le)
0

By identifying F™M(x, x5) as u!’(xy, x,), it can be easily seen that in the presence of
complementary boundary constraints (boundary discontinuities) at x, =0, X, (X, = a or
b depending on whether p = 1 or 2), the two first partial derivatives expressed in the form of
equations 10(b, ¢) and 11(b-e) are given by equations (A1b) and (Alc) in Appendix A with
boundary Fourier coefficients, d;,, b;,, and ¢;,,, d;,,, being given by equations (Bla, b) and
(Ble, f), respectively, in Appendix B.

If complementary boundary constraint of the function F™)(x, x,) is assigned only at
x, =0 (p =1 or 2), then the Fourier coefficients of its first partial derivatives are given as

4 b
B =g, AV + EJ {— FM(0 + 0, x,)} sin(B,x5)dx, formn=1,2,...,00, (12a)
0

2 b
B{!) = %J {—= FM(0 + 0, x,)} sin(B,x,)dx, forn=1,2,...,0, (12b)
0
4
C(l) B.A i:y: 4+ — - J {— FV(x,,040) )} sin(oy, xq)dx; form,n=1,2,...,00, (12¢)

2 b
Cc) = —J {— FY(xy,0 + 0)} sin(e,x;)dx; form=1,2,...,00. (12d)

By identifying F™™(x, x,) as u{"(xy, x,), it can easily be seen that in the presence of
complementary boundary constraints (boundary discontinuities) at only x, = 0 (p = 1 or 2),
the two first partial derivatives expressed in the form of equations 10(b, ¢) and 11(b-e) are
given by modified equations (Alb) and (Alc) in Appendix A with boundary Fourier
coefficients, d;, = — b;, and ¢;,, = — d,,,, being given by equation (Bla, b) and (Ble,f),
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respectively, in Appendix B. In this case, the first terms vanish from the integrands in the
r.h.s. of equations (Bla, b) and (Ble, f).

If complementary boundary constraint of the function FV(x,, x,) is assigned only at
X, = X, (X, = a or b depending on whether p = 1 or 2), then the Fourier coefficients of its
first partial derivatives are given as

4 b
B =g, A 4 _bf {FM(a — 0, x5)(— 1)"} sin(B,x,)dx, form,n=1,2,...,00, (13a)
ao Jo

2 b
B{!) = —bj {FM(a — 0, x,)} sin(B,x5)dx, forn=1,2,...,00, (13b)
ao Jo

4 b
c)=p,A40 + EJ {FO(xy, b — 0)(— 1)} sin(o,x)dx;  for myn=1,2,...,00, (13c)
0

2 b
Cc) = %j {FD(xy, b — 0)}sin(e,x;)dx; form=1,2,...,00. (13d)
0

By identifying F™M(xy, x5) as ul"(xy, x,), it can easily be seen in the presence of
complementary boundary constraint (boundary discontinuities) at only x, = X,(p = 1 or 2),
the two first partial derivatives expressed in the form of equations 10(b, c) and 11(b-e) are
given by modified equations (Alb) and (Alc) in Appendix A with boundary Fourier
coefficients, @, = b;, and ¢, = d;,, being given by equations (Bla,b) and (Ble,f),
respectively, in Appendix B. In this case, the second terms vanish from the integrands in the
r.h.s. of equations (Bla, b) and (Ble, f).

Extension of the above to higher partial derivatives of u{*)(x;, x,) or all partial derivatives
of u?(xy, x5), s = 2, 3, 4 is straightforward, and hence will not be pursued here any further.

For a system of completely coupled fourth order PDEs subjected to complementary
boundary constraints assigned at both ends in each direction, the additional coefficients,
ims Dins - s Ry <+ s Qs Dl -, My, defined by equations (B1, B2) of Appendix B, number
16N (m + n + 1), while the number of equations arising out of satisfying the prescribed
geometric and natural boundary conditions, as noted earlier, equal 8N(m + n + 1). This
mismatch will necessitate revision of the previous hypothesis through the introduction of
additional constraints, i.e., the admissible boundary constraints. In the case of two special
cases, where complementary boundary constraint inequalities are enforced at either x, = 0
or X,, the corresponding opposite ends are assigned the related boundary constraints, and
no such mismatch will occur. It is worthwhile to offer a formal definition of the admissible
boundary constraints. Admissible boundary constraints (and the associated complementary
boundary constraints) refer to the vanishing (and non-vanishing) of certain one-dimensional
beam functions, such as sin(a,x;) and their normal derivatives. For prescribed geometric
boundary conditions, the admissible boundary constraints are identical to the
corresponding boundary conditions, while for prescribed natural boundary conditions
admissible boundary constraints only imply vanishing of the corresponding second or third
derivatives, which correspond to the moment or shear for a beam (in the case of a fourth
order problem), and not that of a physical quantity, such as moment or shear force of a plate
or shell of rectangular planform.

Generalization of the above to a system of rth (» = even) order completely coupled PDEs
would result in 4rN(m + n + 1) boundary Fourier coefficients, while the number of
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equations arising out of satisfying the boundary conditions, as noted earlier, equal
2rN(m + n + 1). Since the assumed particular solution functions are comprised of sin(o,,x1)
or cos(a,x;) and sin(f,x,) or cos(f,x,), vanishing of u{”(xy, x,) at an edge x, = X, will
automatically lead to vanishing of the corresponding tangential derivatives, uif:(xl, X5),
uﬁfit(xl, X5),... at that edge and vice versa. Vanishing of the corresponding normal
derivatives, uf®) (x, x,), u®) (X1, X5), ..., is, however, independent of that of the function
itself. The following discussion illustrates the number of admissible boundary constraints
and the associated complementary boundary constraints, which must be satisfied in order
to produce a solution to the class of boundary-value problems involving completely
coupled second and fourth order PDEs, which is extended to the case of sixth order PDEs,

and is finally generalized to the case of rth order PDEs.

4.2.1. A system of completely coupled second order PDEs

In the case of a boundary-value problem involving a system of completely coupled
second order PDEs, the following two mutually independent combinations of
complementary boundary constraints are possible, one of which must be introduced in
order for the total number of unknowns to become equal to the total number of equations.
Table 1 summarizes these combinations in the presence of complementary boundary
constraints (boundary discontinuities) at both ends, x, = 0, x,, (X, = a or b depending on
whether p =1 or 2).

Combination (1): u®(x,, x,) and the associated tangential derivative are not permitted to
vanish at an edge x, = constant, which will result in non-vanishing of the single-barred
boundary Fourier coefficients. Vanishing of uﬁfz,(xl, X,) at that edge, that corresponds to
vanishing of the single-primed coefficients, constitutes satisfaction of an admissible
boundary constraint, and will not constitute a violation of the physics of the problem.

Combination (2): ufja(xl, X,) is not permitted to vanish at an edge x, = constant, which
will result in non-vanishing of the single-primed coefficients. Vanishing of u¥(x,, x,) and
the associated tangential derivative at that edge, that corresponds to vanishing of the
single-barred coefficients, constitutes satisfaction of an admissible boundary constraint.

Special cases of these complementary boundary constraints being assigned to only one of
the two opposite ends are summarized in Table 2. It may be noted here that these special
cases permit us to prescribe arbitrary boundary conditions at each of the four edges
independent of one another, and thus constitutes the general procedure for solving the most
general form of boundary-value problems. This is in contrast to the former, where the
assignment of same complementary boundary constraints (see reference [1]) on two
opposite ends proves to be restrictive.

TaBLE 1

Symmetrically placed complementary and admissible boundary constraints for a second order
PDE at edges x, =0, X,

Complementary Admissible
Case boundary constraint boundary constraint Comments
1. u; # 0 u;; #0 u;,, =0 Single-primed coefficients vanish;
Single-barred coefficients non-zero
2. u;, 70 w=u;; =0 Single-barred coefficients vanish;

Single-primed coefficients non-zero
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TABLE 2

Unsymmetrically placed complementary and admissible boundary constraints for a second
order PDE at edges x, =0, X,

Complementary Admissible boundary
Combination boundary constraint constraint Comments

x,=0 X, =X, x,=0 X, =X, p=1t=2, p=2t=1
1- u; # Oa ui,p = 0 a;n = - b:na C;m = - d;m:
ui,t # 0 g;n = __ h;na e;m = jfz/ma

U, 70 u=u, =0 a,= I_Jin§ Cim = ciim;

éin :.ﬁm g_im = him;
2. U, # 0 u; =u;,; =0 A = — I_J_in§ Cim = — (Zim;
éin = 7flm g_im = - him;

u; # 0 ui, =0 i = biy; Cim = dim;

Uiy # 0 g;n = h;n: egm :ft/m

4.2.2. A system of completely coupled fourth order PDEs

In the case of a boundary-value problem involving a system of completely coupled fourth
order PDEs, four mutually independent cases of complementary boundary constraints are
possible. Table 3 summarizes these combinations in the presence of complementary
boundary constraints (boundary discontinuities) at both ends, x, =0, X,(X,=a or
b depending on whether p = 1 or 2). These four cases, in turn, produce the following four
mutually independent combinations of complementary boundary constraints, one of which
must be introduced in order for the total number of unknowns to become equal to the total
number of equations (see also Table 4).

Combination (1): u(xy, x,), u (xy,x,) are not permitted to vanish at an edge
x, = constant, which will result in non-vanishing of the single-barred and single-primed
coefficients. Vanishing of u{’) (x1,x,), uf’) (xi,x,), at that edge, that corresponds to
vanishing of the double-barred and double-primed coefficients, constitutes satisfaction of
admissible boundary constraints.

Combination (2): u{®(xy, X5), u’, (x;,x,;) are not permitted to vanish at an edge

X, = constant, which will result in non-vanishing of the single- and double-barred
coefficients. Vanishing of u{® (xy, x5), u{’) (x1,x,) at that edge, that corresponds to
vanishing of the single- and double-primed coefficients, constitutes satisfaction of
admissible boundary constraints.
Combination (3): uf’)(xy, x,), u’) (x1,X,) are not permitted to vanish at an edge
X, = constant, which will result in non-vanishing of the single- and double-primed
coefficients. Vanishing of u{ (xy, x), u{®) (x1, x,) at that edge, that corresponds to vanishing
of the single- and double-barred coefficients, constitutes satisfaction of admissible boundary
constraints.

Combination (4): uf®) (xy,x,), u®, (xy,x,) are not permitted to vanish at an edge
X, = constant, which will result in non-vanishing of the double-barred and double-primed
coefficients. Vanishing of u{¥ (xy, x5), u{’) (x;, x,) at that edge, that corresponds to vanishing
of the single-barred and single-primed coefficients, constitutes satisfaction of admissible
boundary constraints.

Special cases of these complementary boundary constraints and the four possible
combinations, when assigned at only one of the two opposite ends are summarized in

Tables 5 and 6 respectively. As has been mentioned earlier, these “special” cases permit us
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TABLE 3

Symmetrically placed complementary and admissible boundary constraints for a fourth order
PDE at edges x, =0, X,

Complementary Admissible
Case boundary constraint boundary constraint Comments
L. u; # 0 u;, #0; Ui ppp =0 Double-primed coefficients vanish;
Uiy 705 Ui 0 Single-barred coefficients non-zero
2. u;, #0; Double-barred coefficients vanish;
ui,pt 75 Oa ui,pp:ui,ppt = 0 . . .
Ui pee # 0 Single-primed coefficients non-zero
3. Ui pp 7 05 U ppe # 0 Ui p = Ui Single-primed coefficients vanish;
= Ui pe =0 Double-barred coefficients non-zero
4. Ui ppp 7 0 U= Ui = Uiy Single-barred coefficients vanish;
=U; ;=0 Double-primed coefficients non-zero
TABLE 4

Symmetrically placed complementary and admissible boundary constraints for a fourth order
PDE at edges x, =0, X,

Admissible complementary Admissible
Combination boundary constraint boundary constraint Comments
L. u; # 0; u , # 0; Ui ppp = 0; Double-primed and double-
Ui 7 05 Uy gy # 0; barred coefficients vanish;
Uip 7 05ty # 0; Ui, pp = Ui, ppr = 0 Single-primed and single-
Ui 7 0 barred coefficients non-zero
2. u; # 05wy # 0; Ui, ppp = 0; Double-primed and single-
Ui 7 05 Uy g 7 0; primed coefficients vanish;
Ui pp 7 05 Uy ppy # 0 Ui p = U = Double-barred and single-
Ui e = 0 barred coefficients non-zero
3. Ui, 705 U #0; Wi pp = Ui ppr = 0; Double-barred and single-
Ui py 7 0; barred coefficients vanish;
Ui, ppp # 0 u; = u;, = Double-primed and single-
Uiy = Uiy =0 primed coefficients non-zero
4. Ui pp 7 05 Ui ppr # 0; Ui p = Ui py = Single-primed and single-
Ui, pre = 0; barred coefficients vanish;
Wi ppp 7 0 U = Ui = Uiy = Double-primed and double-
Uiy =0 barred coefficients non-zero

to prescribe arbitrary boundary conditions at each of the four edges independent of one
another, and thus constitutes the general procedure for solving the most general form of
boundary-value problems. This is in contrast to the more “general” case, where assignment
of same complementary boundary constraints on two opposite ends proves to be restrictive.

4.2.3. A system of completely coupled sixth order PDEs

In the case of a boundary-value problem involving a system of completely coupled sixth
order PDEs, six mutually independent cases of complementary boundary constraints are
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TABLE 5

Unsymmetrically placed complementary and admissible boundary constraints for a fourth order
PDE at edges x, =0, X,

Complementary boundary Admissible boundary
Case constraint constraint Comments

x,=0 X, =X, x, =0 X, =X, p=1Lt=2 p=2t=1
L w#0;..; Ui, ppp = 0 ap = —biy; = —diw
" "o, VA "o,
Ui 11t # 0 8in = — him Cim = — Jims

u #0;...; Ui ppp =0 iy = biy; Cim = dim;

Ui # 0 gin = hi; Cim = fim’
2. U, 7 0;...5 Ui pp = = — l=7in; Cim = — Ciim;
Ui pyy 7 0 Ui ppe = 0 €in = — Jin; 8im = — him;

Ui, p # 0, s Ui pp = ain = Qin; Cim = iv‘m’

ui.ptt # 0 ui.ppt = 0 e_in :ﬁns g_im = htma
. — ! — ’ . ’ — 1’ .
3. ui.pp # 0, ui.p - ui.pt Aip = — bin’ Cim = — dim’
ui,npt # Oa = ui,ptt = 0 g;n = - h;na e;m = _ft/ma

. — ! — ’ . i _ I’ .

ui,pp # 05 ui,p - ui,pt Ay = bina Cim = dim7

. — — . ’ — ’ . ’ . .

Ui, ppr 7 0; = Ui pnrt = 0; Zin = Niws Cim = Jim»
4- ui,ppp 7& 0> up = ui,l c_lin = - éin; éim = - 6iim;
= ui,tt = Cin = fma 8im = — hmn

Ui = 0; B B
Ui ppp 7 0 Up = Ui, i = bi; Cim = dim
= Uiy = €in = Jins Gim = Nim.
Ui = 0;

possible, one of which must be introduced in order for the total number of unknowns to
become equal to the total number of equations. Table 7 summarizes these cases in the
presence of complementary boundary constraints (boundary discontinuities) at both ends,
x, =0, X, (X, = a or b depending on whether p = 1 or 2). These six cases, in turn, produce
the following 2%/2 = 8 mutually independent combinations of complementary boundary
constraints, one of which must be introduced in order for the total number of unknowns to
become equal to the total number of equations.

Combination (1): ul(xy, x,), u) (x1, x2) and uf®) (x1, x,) are not permitted to vanish at an
edge x, = constant, which will result in non-vanishing of the single-barred, single-primed

; - hi ) () ()
and double-barred coefficients. Vanishing of u;*)  (x1, X2), ui’,,,, (X1, X2), and u;®), - (xy, X3)

at that edge, that corresponds to vanishing of the double-primed, triple-barred and
triple-primed coefficients, constitutes satisfaction of admissible boundary constraints.

Combination (2): u{(x, x5), u’)(x1, x,) and u{’)  are not permitted to vanish at an edge

X, = constant, which will result in non-vanishing of the single-barred, single-primed and

double-primed coefficients. Vanishing of u{®) (x;, x,), u{’)  (x1, x,), and u®)  (x;, x,) at

that edge, that corresponds to vanishing of the double-barred, triﬁTg?lp)parred and
triple-primed coefficients, constitutes satisfaction of admissible boundary constraints.
Combination (3): u(xy, x,), u’) (x1,x5)and u®)  (x;, x,) are not permitted to vanish at
an edge x,=constant, which will result in non-vanishing of the single-barred,
double-barred and triple-barred coefficients. Vanishing of uf) (x;, x,), u{®) (xy, x,), and
) oppp(X15 X2) at that edge, that corresponds to vanishing of the single-primed,
double-primed and triple-primed coefficients, constitutes satisfaction of admissible

boundary constraints.
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TABLE 6

Unsymmetrically placed complementary and admissible boundary constraints for a fourth
order PDE at edges x, =0, X,

Complementary Admissible boundary
Combination boundary constraint constraint Comments

x,=0 X, =X, x,=0 X, =X, p=1t=2, p=2t=1
. . 0 "o ", "o "o
1- U; # Oa [EREY ui,ppp - 05 Aip = — bina Cim = — dim:
" ", v " .
ui.tlt 7é 0 ui,pp = gin = - ﬁina €im = — =im>
ul,p7éosa ui.pptz(); ainz _:bin; c_im= _ZIM?
Ui, ptt #* Oa €y = _fin; Sim = — him;

. . . " ”. " "o,

u; # 0; cees Ui, ppp = 0, Aip = bins Cim = dim’

" ", no__ g
ui,ttt 75 0 ui,np = gin = Qins Cim = =ima
ui,p 7& 0’ s ui,ppt = 05 din = éin; éim = Czlim;
ui,ptt 3& 0 e_in :ﬁna g_im = him;

. . . ” ”. ” "o,
2~ U; ;‘é Oa ey ui.ppp = Oa Aip = — binv Cim = — dim7
. _ "o " v " .
Ui # 0; Ui,p = Ui, pt gin = — hiy; Cim = — Jims
. — . ! — ’ . ") — I’ .
ui,pp 7'& Oa ui.ptt - Oa Aip = — bina Cim = — dima
. ;o . ro_ ’ .
ui,ppt 75 0’ 8in = — him Cim = — Jims
. . . ” ", N /N
u; #0;...5 Ui, ppp = 0; ai, = biy; Cim = dim;

" ", no__ .

ui,ttt 7& 0 gin = hina €im = Jim>

. . — ’ . ’ . ! . 1’ .

“i.pp 75 0> LR ui,p - ui,pt Aip = bina Cim = dim9

o —_— — . ’ — ’ . ’ — {7 .

ui,ppt # Os - ui,ptt - Oa in — hin’ Cim = Jim>
3~ ul,p7éosa ui.ppz ainz _éin; E:im= _ZIM?
”i,ptt 75 Oa ui,ppt = 0 e_m - _f_lna g_zm - ﬁim;
Ui ppp # Oa Up= -+ Aip = — éin; Cim = — 6iim;
Ui = 0; Cin = — fin: Gim = — him;

ui,p 7& 0’ e ui,pp = din = éin; Eim = 6iim;

ui,ptt 3& 0 ui,ppt = 0 e_m :f_;na g_im = ﬁim;

”i,ppp # 0> U= - Aip = éin; Cim = dim;

Ui =0; €in = Jins Gim = Pim;
4. Ui pp # 07 Ui p = Ui, pt a;n = - b;nv c;m = - d;m7
. _ _ ro_ ’. ro_ R
ui,ppt ?é 07 - ui.ptt - 0 8in = — ﬁin: €im = _Ens
Ui, ppp # Oa Up= -+ Aip = — éin; Cim = — éim;
Ui = 0; Cin = — fin: Gim = — him;

. - ! — ’ . W — I’ .

Ui pp 7 0; Uip=1Uip  in=Dy; Cim = dim;

. — — ’ — ’ . ’ — .

ui.ppt ;é 05 - ui.ptt - 0 8in = kins €im = im>

Ui, ppp #* Oa U= - Aip = _in; Cim = (Zim

Ui e = 0; €in = Jins Gim = him.

Combination (4): u{®(xy, X5), u) (x1,x,) and uf®)  (x;, x,) are not permitted to vanish
at an edge x, = constant, which will result in non-vanishing of the single-barred,
double-primed and triple-barred coefficients. Vanishing of u{’)(x, x2), u{®) (x;, x,), and
) oppp(X15 X2) at that edge, that corresponds to vanishing of the single-primed,
double-barred and triple-primed coefficients, constitutes satisfaction of admissible

boundary constraints.
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TABLE 7

Symmetrically placed complementary and admissible boundary constraints for a sixth order
PDE at edges x, =0, X,

Complementary Admissible boundary
Case boundary constraints constraints Comments
L u; # 05 u;, #0; Ui ppppp =0 Triple-primed coefficients vanish;
Uiy 7 0; Us e # O Single-barred coefficients non-zero
Ui 111 7 0; Ui e 7 0
2. Ui, 7 05t e # 0; Ui pppp = Triple-barred coefficients vanish;
Ui pee 7 05 Ui et 7 0; Ui ppppt = 0 Single-primed coefficients non-zero
Ui pray 7 0
3. Ui pp 7 05 Uy ppe 7 0; Ui, ppp = Ui pppt Double-primed coefficients vanish;
Ui ppre 7 0; = U pppre = 0 Double-barred coefficients non-zero
U; pprit 7 0
4. Ui ppp 7 0; Ui pp = Ui, ppt Double-barred coefficients vanish;
Ui pppt # 0; = Ui pprt = Double-primed coefficients non-zero
Ui, ppprr # 0 Ui, pptir =
5. U;, pppp 7 0; Ui p = Ui py Single-primed coefficients vanish;
U; ppppr 7 0 = Ui pre = Ui, prnr Triple-barred coefficients non-zero
= Ui pigy = 0
6. Ui ppppp 7 0 U = Ui = Uiy Single-barred coefficients vanish;
= Uiy = Uiyt Triple-primed coefficients non-zero
= Ui e = 0

Combination (5): u®) (x, x), uf’) (x, x,) and u; & oppp(X15> X2) are not permitted to vanish
at an edge x,,=constant which will result in non-vanishing of the single-primed,
double-barred and triple-primed coefficients. Vanishing of u{(x;, x,), “; ppp(xl, X,), and
uﬁfl,ppp(xl, Xx,) at that edge, that corresponds to vanishing of the single-barred,
double-primed and triple-barred coefficients, constitutes satisfaction of admissible
boundary constraints.

Combination (6): uf®) (xy, x,), uf’) (x1, X,) and ul ¥ oppp(X15 X2) are not permitted to vanish
at an edge x,,—constant which will result in non-vanishing of the single-primed,
double-primed and triple-primed coefficients. Vanishing of u*(x,, x,), u{’) (x, x,), and

f;mw(xl, Xx,) at that edge, that corresponds to vanishing of the single-barred,
double-barred and triple-barred coefficients, constitutes satisfaction of admissible boundary
constraints.

Combination (7): u®, (x1,x5), ul’)  (x1,x;) and ) (x;,x,) are not permitted to
vanish at an edge x, = constant, which will result in non-vanishing of the double—barred,
triple-barred and trlple primed coefficients. Vanishing of u®(xy, x,), u! (xl,xz) and

Es)ppp(xl, X,) at that edge, that corresponds to vanishing of the single- barred smgle primed
and double-primed coefficients, constltutes satisfaction of admissible boundary constraints.

Combination (8): uf®  (xi,x,), ul (x1,x,) and u® . (x;,x,) are not permitted to
vanish at an edge x, = constant, which will result in non-vanishing of the double—primed,
triple-barred and trlple primed coefficients. Vanishing of u®(xy, x,), u! (xl,xz) and

Es’pp(xl, X,) at that edge, that corresponds to vanishing of the single- barred smgle primed
and double-barred coefficients, constitutes satisfaction of admissible boundary constraints.

Special cases of these complementary boundary constraints being assigned at only one of

the two opposite ends are summarized in Table 8. As has been mentioned earlier, these
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TABLE 8

Unsymmetrically placed complementary and admissible boundary constraints for a sixth order
PDE at edges x, =0, X,

Complementary boundary Admissible boundary
Case constraint constraint Comments
x,=0 X, =X, x, =0 X, =X, p=1Lt=2 p=2t=1
. . — (- "o ", o .
1- U; 75 Oa LERNY ui,npppp - 07 Ay = — bin ’ Cim = — dima
. "o e, "o ",
Ui giee 7 0; gin = — hiy; €im = —Jims
. . — 0 e . o g,
U; 75 Oa LEREY ui,npppp - 07 Ay = bin s Cim = dim)
. e . e __ g,
ui,mn 7é 0’ gin - hin H €im _flm 5
2- ui,p ;é 0; s ui,pppp = dzn - Qin, 71m 6iim;
Ui, priee # 0; Ui ppppt = 0; ein = _fin; gzm - him>
ui,p 7é Oa ey ui,pppp = din = i)ina Cim = ('iim;
”i,ptm 7é 0’ ui,ppppl = 07 éin =.f;'n; gim = hzm,
o . ” "o, " "
3. Ui, pp # Oa LERRY Ui ppp = "+ = Aip = — bin’ Cim = — dim
. _ —_ 0 no__ ". no_ ",
ui,ppttt # 07 - ui,ppptt - 07 8in = — him Cim = — Jim»
. _ _ "o . S
Ui, pp #* 0’ Uippp = *** = Qin = bina Cim = dim,
. — 0 "o . "o g,
ui.ppttt :/‘é 0; ui.ppptt - 0’ 8in = him Cim = Jim>
4~ ui,ppp 7& 0> s ui,pp = ... ain = - é)in; Tim = - ciim;
ui.ppptt 3& 0’ ui.ppttt = Oa ém = fin; gtm - him;
Ui, ppp #0;...; Uipp = "+ = Qip= éin; Cim = iv‘m;
ui,npptt 7é Oa ui,npm = 05 éin :flna g_im = hLma
. —_ — ’ — . ! — U .
5. ui,pppp # 07 ui,p = = Aip = — bina Cim = — dima
. — . / _ ’ . ’ _ ! .
Ui, ppppt # 07 Ui, prtee = 0: 8in = — hin, Cim = 7fim5
. — — ’ — . ! — U .
Ui, pppp 7 0; Uip= " = in = biy; Cim = i
. — . / _ ’ . ’ _ .
ui,ppppt 75 07 ui,ptttt - 0: gin - hina €im _fim,
6. Ui, ppppp # 05 U= - = din = - éin; Eim = - cilm;
Ui toee = 09 Cin = _fin; 8im = — him;
Ui ppppp 7 0 Up= - = din = bi; Cim = dim;
ui,ttttt = 07 €in = Jins gim = htm-

“special” cases permit us to prescribe arbitrary boundary conditions at each of the four
edges independent of one another, and thus constitutes the general procedure for solving
the most general form of boundary-value problems. This is in contrast to a more “general”
case, where assignment of same complementary boundary constraints on two opposite ends
proves to be restrictive.

4.2.4. A system of completely coupled rth (r = even) order PDEs

In the case of a boundary-value problem involving a system of completely coupled rth
order PDEs, the following » mutually independent cases of complementary boundary
constraints are possible. Table 9 summarizes these cases in the presence of complementary



BOUNDARY CONSTRAINTS 277
TABLE 9

Symmetrically placed admissible and complementary boundary constraints for an rth order
(r = even) PDE at edges x, = 0, X,

Complementary boundary constraint Admissible boundary constraint

Lo #0;u, #0540 #0505 Ui ppp -+ e—1) =0
Ui gggooor—1) 70

20wy, 0 U #0505 Uipp - r—2) = Uitpp - -2y = 0
Uit r—2) 7 0

30 Uy pp 705 Uy ppe 055 Uipoor—3) = Uigp oo p—3)=Uigep -3y =0
Ui, ppt +++ (r—3) #* 0

4. ui,pp,,;é(); Mi,pppt7$0:...; ui,p..,(r,m:ui,,p...(r,@:ui,t,p...(,,4):0

Ui, pppt -+~ =2y 7 0

=2 Uy O Uiy o3y 05 Ui pp = Ui ppr = **+ = Ui ppt - ¢—3) = 0
ui,tlp-~-(r—3)7é0

r—1. Ui pp -+ (r—2) #0, Ui tpp +++ (r—2) #0 Uip = Ui ppt = ° = Ui ppt--- r—1) =0

Fo Uipppe-r—1) 7% 0 U= Ui = Uy = " =Ugg- p—1) =0

boundary constraints (boundary discontinuities) at both ends, x, =0, X, (X, =a or
b depending on whether p =1 or 2). These r cases, in turn, produce 2”2 mutually
independent combinations of complementary boundary constraints, one of which must be
introduced in order for the total number of unknowns to become equal to the total number
of equations.

Combination (1): u®(xy, x,), uf.‘fi,(xl, X5), u(i‘f;,p(xl, X2)yeens ”Sizpppp...(r—2>/2(xl’ X,) are not
permitted to vanish at an edge x, = constant, which will result in non-vanishing of the
single-barred, single-primed, double-barred, double-primed, ... (i.e., the first half of the
barred and primed) coefficients. Vanishing of u®, =~ . (xy, x,), U e 1) (X1, X2)
at that edge, that corresponds to vanishing of the latter half of the barred and primed
coefﬁcients, constitutes satisfaction of admissible boundary constraints.

Combmatlon U (1, Xo), Ul (X1, X2), u f;,ppp(xl, X,), ..., are not permitted to vanish at an
edge x, = constant, whrch will result in non-vanrshmg of all the barred coefficients.
Vamshmg of u®) (x1, x,), u®) (X1, X2), ”Siwppp(x}’ X,), ... . at tlrat edge, thart gorresponds to
vanishing of all the primed coefficients, constitutes satisfaction of admissible boundary
constraints.

Combination: U (xq, x2), u) (X1, x2),ul) (X1, X2), ..., are not permitted to vanish at an
edge x, = constant which will result in non-vanishing of all the primed coefficients.
Vanishing of u”(x, x), u{’) (x1, x2), uf’)  (x1,X3),..., at that edge, that corresponds to
vanishing of all the barred coefficients, constitutes satisfaction of admissible boundary
constraints.

) . . r/2Y. ,,(s) (s) . .
Combination 2"%): u;®), 0 5 (X1, X2)yooos )0 o q)(X1, X2) are not permitted to vanish

at an edge x, = constant, which will result in non-vanishing of the latter half of the barred
and primed coefficients. Vanishing of u{®(x,, x,), u{®) (x 1, x5), uf®) (X1, X2),.o, t (5

(x1, Xx,) at that edge, that corresponds to vanishing of the single- barred, single-primed,
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double-barred, double-primed, ... (i.e., the first half of the barred and primed) coefficients,
constitutes satisfaction of admissible boundary constraints.

Special cases of these complementary boundary constraints being assigned at only one of
the two opposite ends can be dealt with in a manner similar to r = 2, 4, and 6, and will not
be presented here in the interest of brevity. As has been mentioned earlier, these “special”
cases permit us to prescribe arbitrary boundary conditions at each of the four edges
independent of one another, and thus constitutes the general procedure for solving the most
general form of boundary-value problems. This is in contrast to a more “general” case,
where assignment of same complementary boundary constraints on two opposite ends
proves to be restrictive.

5. CONSTRUCTION OF THE COMPLETE FOURIER SOLUTION

Substitution of the correct partial derivatives, as obtained above, into the governing
partial differential equations (1) and equating the coefficients of sin(x,,x;)sin(f,x,), etc.,
will yield the following, fori,j =1,2,...,N

a U — biji oty Ul — bija Bu U — €111 00 U b + @iV + DjnGi)
— Cij22 Bu(Ba Uﬁ,ln)n + Cjm¥n + djm5 ) + (¢ij12 + Cij21)%mPu U;,Z,,),,
+ dijy 110 {00 U;:,),, — (ZinVm + W)} + (dijr12 + dijiar + dija11) B {%m Uﬁl)n
+ BV + Pim0n)} + dij222{Ba U;,sn),. Bu(€mVn + fimOn)}
+ i1 {0mU S + G @V + DjnOm) — (@Yo + binOm)}
—(ei1112 + €ijria1 + €ijainr + €210 {% By UJ(,Z,,),, — (@i + SnOm)}
+ (eij1122 + €ijia12 + €ij2211 + €ija121 + €ij2112 F €ij1221) % Pl O P U,(,ln)n
+ Bul@pwym + bjudw) +
+ U (CimYn + djm0n)} — (€ij1222 + €ij2122 + €ij2212 + €ij2221) Pul{ttm P U;f,,),,
+ ZimVn + MmOy
+ €ija222{ B U,(,l,,)n BaCimvn + djm0y) — BulCimyn + d:jmén)} =04
formn=1,2,...,0. (14)
Equation (14) and its counterparts, that correspond to equating the coefficients of
cos(a,x1) cos(f,x,), sin(a,xq)cos(f,xz), cos(o,xi)sin(f,x,), sin(e,x;), sin(f,x,),cos
(omX1), cos(f,x,) and the constant terms to zero, will supply N(4mn + 2m + 2n + 1) linear
algebraic equations. The remaining equations must be supplied by the prescribed boundary

conditions, given by equation (4). Substitution of the appropriate particular solution
functions and their appropriately derived partial derivatives up to (r — 1)th order into
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equation (4) will yield

o0 o0

) 7 (1) (p) (4) ;P (3) e (1)
Z Z O! Xl)SIIl(ﬁ X2 {aafj U]mn baltjjl U]mn bagjzﬂ Ujmn_ af]llaM(a U]mn

+ ajnym + b}ném) + (0;171)12 + 5;?}21)‘xmﬁn Ujrzn)n - C_;Il?}zzﬁn(ﬁn Uj(yln)n + C_jm'Vn + d_jmén)
+ d_;tli]}lll m (% U;;“n)n ZjnVm — Mjndm) + (da((ljllz + d(ill)j)lzl + J;Ii]j)'zu)“mﬁn(“m U;r3n)n

+ eJ"/m +fjn m d(1]212 + do(fj)lzz + daljZZl) mﬁn(ﬁntfn)n + g_jmyn + lemén)

+ Jg}zzzﬁn(ﬁn Uj(i)n - l Vn _fj/mén)} + Z Z COS(“mxl)COS(ﬁnXZ){ }

m=1n=1

£ Y sinx)cos(fxa) )+ YD coslax)sin(fxa){ )
+ i sin(o,xg){ -} + i cos(o,xy){ -} + Z sin(B,x2){ -}
+ i cos(f,x,){ - } + {constant} = 0. (15)

For the rectangular domain [0, a]x[0, b], under consideration, application of the boundary
conditions, given by equation (15), at the edges x; = 0, a and x, = 0, b, will, on equating the
coefficients of sin(ax,x;), etc., to zero, yield 4N(2n + 1) and 4N (2m + 1) linear algebraic
equations, respectively, for a system of fourth order completely coupled PDEs. Finally,
a system of N (4mn + 10m + 10n + 9) linear algebraic equations in like number of unknown
Fourier coefficients will be solved. Generalization of the above to the case of the
boundary-value problem involving a system of rth (r = even) order completely coupled
PDEs subjected to satisfaction of admissible boundary conditions/constraints and
associated complementary boundary constraints would result in a system of
N{4mn + 2(r + 1)(m + n) + 2r + 1} linear algebraic equations in like number of unknown
Fourier coefficients.

6. APPLICATIONS TO CLASSICAL LAMINATION THEORY (CLT) BASED LAMINATED
THIN SHELLS—PROBLEM STATEMENT

A doubly curved panel of rectangular planform is shown in Figure 1, where the reference
surface-parallel orthogonal co-ordinate-axes, x; and x,, representing the lines of principal
curvature, are placed at the midsurface of the shell, with the x;-axis remaining parallel to its
normal. R; (i = 1, 2) represents the principal radii of curvature of the shell’s middle surface.
a and b represent the curved span lengths in the x; and x, directions, respectively, while
h denotes the total thickness. The thickness of each layer is denoted by h® = [x¥ ™1 — x¥,
in which x§ ™" and x{, k = 1,..., N, are the distances from the reference surface to the
bottom and top face of each lamina, respectively, with N being the total number of layers.
The simplifying assumptions are: (1) shallowness, (2) transverse inextensibility, (3) classical
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Figure 1. A thin laminated double curved panel of rectangular planform.

lamination theory (CLT) and (4) negligibility of geodesic curvatures of the lines of curvature
co-ordinates [17]. Based on these assumptions, generally valid for the case of relatively thin
shells, the equations of equilibrium yield the following system of highly coupled fourth
order partial differential equations (see e.g., reference [17]):

biziuz 1 + bizauz 5 + Ciyrqty 11 + Cinral,12 + Cita2U1,22 + Ciz11Uz 11
+ Ciz12Uz,12 + Ciz22Uz 22 + dizi11Uz 111 + dizr12U3,112 + diz122U3,122
+ dizzaU3 2, =Ci—¢q;, i=1,2, (16a, b)
aszuz + byyiuy q + bagatiy 2 + bazius 1 + basatiz o + €311tz 11 + C3312U3,12
+ C3322U3,22 T d3rr11t 111 + darrioU 112 + dar122U 122 + d31222U1 222
+dsz111Uz, 111+ d32112Uz 112 + d3zi22Us 122 + d32222Uz, 222 + €331111U3, 1111

+e331112U3, 1112+ d331122U3,1122 T €331222U3,1222 +€332222U3,2222 = C3 — ¢35,

(16c)

where the constant coefficients are as provided by equations (C1) in Appendix C, and
C,i=1,2,3, is given as

2P12>“,~, i=12 Cs=—0’Puus, (172, b)

1

Ci:—a)2<P1+
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wherein both the surface-parallel and transverse inertias are included, and where P;,i = 1, 2,
is defined as

(k)

(Py, Py) = i J% p®(1, x3)dx; (18)

= k1)
k=1 J x5

in which p® is the density of the kth layer.

The following boundary conditions, prescribed at an edge x; =0 or Xx;, and their
counterparts prescribed at one or both of the other two edges, form a self-adjoint differential
system along with the governing PDEs (16).

Simply supported edge.

SS1:uz =M; =N, =Ng=0, (19a)
SS2:u3 = M; =u; = Ng =0, (19b)
SS3:uz3;=M; =N; =u, =0, (19¢)
SS4:uy =M, =u; =u, =0. (19d)
Clamped edge:
Cliuz=u3; =Ny =Ng=0, (20a)
C2iuz =u;3, 1 =u; = Ng =0, (20b)
C3iuz =u;3,1 =Ny =u, =0, (20c)
Chdiuz=u3; =u; =u, =0. (20d)
Free edge:
F1:Q1 + Mg, =M; =N; = Ng =0, (21a)
F2:01+ Mg, =M, =u; = Ny =0, (21b)
F3:01 + Mg, =M, =N, =u, =0, (21¢)
F4:01 + Mg, =M, =u; =u, =0. (21d)
Roller-skate edge:
RS1:01 + Mg, =u3 1 =Ny =Ng=0, (22a)
RS2:Q1 + Mg, =u3 =u; = Ng =0, (22b)
RS3:Q1 + Mg, =u3 =N, =u, =0, (22¢)

RS4Q1 + M(),Z = u3,1 =Uy = Uy = 0, (22(1)
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wherein N;, M; (i = 1, 2, 6) for an arbitrarily laminated anisotropic shell can be expressed in
terms of the midsurface strains and changes in curvature as follows [21]:

_ Bll I N 1 B12
Ny =4A11 + R, ug,1 + {416 + cBisfus , + A1z + R, Uz,z
2

1

An i

+ {A16 — CBlG}uz’l + {— +

R, R, }u3 — Byius 11 — 2Bisus, 12 — Biaus 2o, (23)

where A;;, B;;, and D;; (i,j = 1,2, 6) are extensional, coupling, and bending rigidities,
respectively, while A;; (i, j = 4, 5) denotes transverse shear rigidities. N, and M, can be
obtained from the expressions for Ny and M,, respectively, by replacing 1 by 2, ¢ by — ¢,
and vice versa.

7. FORCED UNDAMPED VIBRATION OF THIN LAMINATED SHELLS/PLATES

In what follows, the dynamic response of thin laminated shells and plates subjected to
periodic loading is investigated. The following cases are considered to illustrate the present
solution technique.

7.1. AN ARBITRARY LAMINATED THIN ANISOTROPIC DOUBLY CURVED GENERAL PANEL
SUBJECTED TO GENERAL TRANSVERSE PERIODIC LOADING

A curved panel of rectangular planform, but otherwise of arbitrary geometry, is
considered:
R, #R,, c#0.

7.1.1. Particular solutions

The particular solution functions, which can be initially assumed in the form of
equations (6, 7), will be dependent on the applied loading. Without any loss of generality,
the following distributed periodic loading in equations (16) is assumed [1]:

q1(x1, X2) = qa(x1, X2) = 0; q3(x1, X2) = po + p1X1/a + p2X,/b + p3xix5/(ab), (24)

which is expanded in the form of double Fourier series as follows:

o= 3 3 O sin(x;)sin(fxa), (254)
m=1n=1
pixifa=3 Y 09 cos(amxy)sin(Buxa), (25b)

m=0n=1
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poxab= 3 3 0P sin(ax)cos(Buxs), (25¢)
m=1n=0

paxixsf@h) = 3 Y 02 cosamxy)cos(Brxa), (25d)
m=0n=0

in which

oY) = 16po/(n*mn) for mn=1,3,...,00,

3mn

26a
=0 for myn=2,4,...,0, (262)
0% = 16ps/(n®mn)* for mn=1,3,...,00, 26b)
=0 for mn=24,...,00,
Q(Szrr)10:_2p3/(nm)2 for man:193:"'nwa (26)
c
=0 for m=2,4,...,00,
0%) = —2ps/(mn)* for n=1,3,...,0, 0260
=0 for n=2,4,...,0,
0P = —16p,/(n®mn?) for m,n=1,3,...,0, 269)
e
=0 for m,n=2,4,...,00,
Q(33;r)10 = 2p2/(7'm) for m = 13 3: e, 00, (26f)
=0 for m=2,4,...,00,
0P = —16p,/(n®m*n) for m,n=1,3,...,0, (6g)
=0 for m,n=2,4,...,00, &
@ —2p fmn) for n=1,3,...,00,
QSOn p1/(nn) (26h)

=0 for n=2,4,...,0.

Substitution of equations (25, 26) into equation (16) and equating the coefficients of

sin(o,,x,) sin(f,x,), etc., will reveal that UY) UY U2 U® U - and USSP  are
coupled through the presence of Q%) and Q) . Additionally, UQ) U

vl U@ U and U are coupled through the presence of U, and USY . Therefore,
in the case of an arbitrarily laminated anisotropic doubly curved shell, subjected to the
transverse periodic loading, given by equations (2b), (5) and (24-26), the appropriate
particular solution functions will be given by equations (6, 7) with u;,j =1,...,N = 3.

7.1.2. Complementary solution

The complementary or boundary Fourier solutions to the system of partial differential
equations for a thin arbitrarily laminated doubly curved panel given by equation (16),
subjected to various combinations of transverse and in-plane boundary conditions, given by
equations 19(a-d)-22(a-d), prescribed symmetrically or asymmetrically (with respect to
panel centerlines) at opposite edges can easily be obtained using the present approach.
Tables 10, 12 and 14 summarize the non-zero boundary Fourier coefficients for various
symmetrically prescribed transverse and surface-parallel boundary conditions. Similarly,



¥8¢

TasLE 10

Symmetrically placed complementary and admissible boundary constraints for the transverse displacement us of a thin laminated doubly curved
panel at edges x, =0, X,

Boundary Complementary Admissible Vanishing coefficients Non-vanishing coefficients
condition boundary boundary p=1, p=2, p=1, p=2,
(transverse) constraint constraint t=2 t=1 t=2 t=1
us # 05 cees u3.ppp = Oa agn = gn = C;m = gm = d3n; Efm; C_3m> d:3m;
&R # 0> ggn = gn = e/?:m =f?:/m =0 é3n;.f3n # 0 g_Sm’ h3m # 0
Free (F): B B
Uus,p #0; Us, pt # 0 Uz pp = a=3n = £3n = E3m = i3m = a/Sn; bl?»na Cl?»m; d/3ma
uS,prt # 0 u3,ppt =0 é3n =.f3n = gSm = hSm =0 g/Sna /3n # 0 e%maf?:m # 0 ~
>
us ;é 0; e u3,ppp = 09 a/?:n = bgn = Cgm = /?;m = &3n; éSn; E3m’ 613m; %
U3 11 75 07 ggn h3n 0 egm = ?;/m =0 eSn;fZBn 75 0 83m> h3m 75 0 :C>:
Roller-skate (RS): S
uS,pp 7& 0; u3,p = uS,pt a/Sn = b/3n = c/?am = d/?rm = (1 bSn; C= dSma g
U3, ppt # 0; = U3, put = 0; g/3n = h’3n =0 6/3,,, :fém =0 e_snaf3n #0 Z3m h3m #0 E
us,, 7 0; uz p # 0; Uz, pp = as, = §3n = Cam = CZsm = '35 b Cms A3
u3,ptt 7é Oa u3,ppt = 0> e_3n :f3n = 0 g_3m = h3m = 0 g/3na h’3n 7é 0 e’3maf3’m ;é 0
Simply supported (SS): B B
U3, ppp 7* 0 Uz = - d3n = l_73n = E3m = (13m = A3zp; gm Cgma gma
:u3,nt=0 éSn =f3n =0 g3m=h3m:0 ggn: gn #0 eSm; 3m¢0
uS,pp 7& 0; u3,p = u3,pt a/Sn = b/3n = c/?am = d/?rm = (1 bSn; ESma i_Sma
”3,m)t 75 0’ = u3.ﬁtt = 05 g/3 = ’ = 0 e/3m = ém = 0 e_3naf3n 75 0 g_3ma h3m 75 0
Clamped (C): _ B
u3.ppp # 0 Uz = -+ dSn = é?m = ESm = 43m = a%n; /?;n’ C3ms /Z;ma
U3 1t = 0 €3, :f3n =0 Gam = h3m =0 3)1; 270 egm; 3m # 0.
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TaBLE 11

Unsymmetrically placed complementary and admissible boundary constraints for the trans-
verse displacement uz of a thin laminated doubly curved panel at edges x, = 0, X,

Complementary Admissible boundary
Combination boundary constraint constraint Comments
Atx,=0 Atx,=x, Atx,=0 Atx, =%, p=1, p=2,
(only) (only) (only) (only) t=2 t=1
us #0;...; Uz ppp = 0; A3y = — D5, B =—dsu;
U3, # 0; G =—N3; €3 =—fam}
Uz, # 0;...5 Uz pp = A3y = — £3n§ Cam = — Uzlst
U3, pu 7 0; Uz ppt = 0; e Sans Sam = — ham;
Free (F):
us #0;..; Uz ppp =0; a3, = b3y; B = d3m;
U3 4y 7 0; g3n = hsm els/m = =3;/m
us, #0;...; U3, pp = A3n = b3n; Cam = dam;
U3, e 7 0; U3, ppr = 0; &3 = fau; Sam = ham;
us #0;...; Uz, ppp = 0; dap = — b3 = —d5p;
. — — . s — .
U3, e #* 0, u3,p - u3,pt g3n - h3n7 €3m = —J3ms
U3, pp # 07 Uz, pur = 07 a’Sn = - b’3na Cém = - d/3ma
Uz, ppe # 0; Gan=— N, €m = —fim
Roller-skate
(RS):
us #0;...; Us ppp =0 a3, = b3, Cim = dim;
”3,1" 7é 0 g/3,n - h3na egm = élma
Uz pp # 0; Uz p=U3p A3y = Db3y; i = dm}
U3 ppr 7 0; = U3, p1t = 0; g/3n = h’3n e _f3ms
u3,p7é05> “3,pp= 53n= *£3n; 53m = *i3m;
U3 e 7 0; Uz pprt = 0 ez, = _én; Sam = — ﬁam;
Uz, ppp 7 0; Uz = - 3y = — 1_73n§ Cam = — 0_l3m;
Uz 4 = 0; 23, = — f3u; Zam = — ham;
Simply
supported (SS): _ _
us, #0;...; Uz pp = Az, = 23715 Cam = £3m;
U3, prt #0 U3 ppt = 0 23, :]:3n; Sam = ﬁ3ma
U3, ppp # Oa Uz = +- (’_ISn = l_)3n; E3m = ‘_l3m9
Uz 0 = 0; &34 = fau; &am = ham;
Uz, pp # Oa Uz,p = U3, pt a/3n = - bl?ana C/3m = - d%m:
u3,ppe # 0; =uz,pu = 0; 8= =N €3 =—f3m}
Uz, ppp # 0; Uz = -+ az, = — 1_73n§ Cam = — 0_l3ma
Uz 0 = 0; e =—fa  C3m=— ham
Clamped (C):
us,pp # 0; Uz, = Uz, a3, = bhy; Cam = d3m;
Uz ppt # 0; = Uz pu =05 g3n = N3y €3m = fim;
U3, ppp 7 0; Uz = - az, = é’sn; Cam = 0_l3m§
Uz 0 = 0; 23, = fan Zam = hapm.

Tables 11, 13 and 15 summarize the non-zero boundary Fourier coefficients for various
asymmetrically prescribed transverse and surface-parallel boundary conditions. The
following examples are provided for the purpose of illustration.
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TABLE 12

Symmetrically placed complementary and admissible boundary constraints for the in-plane
displacements uq of a thin laminated doubly curved panel at edges

Comments
Boundary Complementary Admissible
condition boundary boundary Vanishing Non-vanishing
(in plane) constraint constraint coefficients coefficients
(@ x;=0,%X;,=a _
lor3 up # 0 uy,5 #0; ug1 =0 ay, = b1, = a_lnibln;
gln:hrln:() éln;f1n7é0
20r4 Uyg 1 #0 Uy :u1,2:0 aln:_gln: a/ln;blln;
€1n =f1n = 0 g’lm h’ln 7é 0
(b)XzZO,gzzb _
1 or2 ug #0;uy,, #0 uy ;=0 Cim=dim = Cim; dim;
e’lrn:fl/m:o g_lm;hlmgéo
3or4 u, #0 up=u;,; =0 Cim =7d_1m= Cms dims
g = hlm = 0 e’lm;fl/m # 0

7.1.2.1. Example 1: clamped C4 at all four edges. For clamped boundary condition
prescribed at all four edges, the transverse complementary boundary constraints, uz 11 # 0
and u; 11, # 0 at x; = 0, X;(= a), while uz ,, # 0; and u; ,,, # 0 at the other two, dictate
that the boundary Fourier coeflicients—aj,,; b3,,, C3ni fams @sns Dans Goans Nan Cams d3m, J3ms
ham: Cam: dsm; €5 and f3,—be non-zero (Table 10). Additionally, for the type
4 surface-parallel boundary condition prescribed at all four edges, the surface-parallel
complementary boundary constraints, u; ; # 0 and u, ; # 0 at two opposite edges, x; = 0,
X1(= a), while u; , # 0 and u, , # 0 at the other two, dictate that the boundary Fourier
coeflicients—a'1,; b'in; g1ns Pins @ans Doy €ans Mans Cims dims €ims fims Coms dom; €2m and
f5m—be non-zero (Tables 12, 14). The corresponding non-zero displacements or their
normal derivatives at the edges are then given as follows:

aZ _ _ - .
{ (0 XZ) u(31,)11(a9 x2)} = Z Z (+ asz, — b3n) Sln(ﬁnXZ)s (273, b)
n=0
a X _ _ =
{10, x2); u§ 1 (a, x,)} = 1 Y. (F &3 — f3n) cOS(Bux2), (27¢, d)
n=0
(1) (1) b & — 5 7 :
{“3 h2(x1,0) “3,22(xls b)} = 4 Z (F Cam — dap) sin(o, X 1), (27e, 1)
m=0
) LR 7
{”3 h2(x1,0) ;U3 5, (xq, b)) = 2 Y. (F Z3m — ham) cos(a,X1), (27g, h)
m=0
a & ..
{“3 111 (0, x2); ”3 111(a X5)} = I Z (F a3, — b3,)cos(B.x,), (271, )
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TaBLE 13

Unsymmetrically placed complementary and admissible boundary constraints for the in-plane
displacement uq of a thin laminated doubly curved panel at edges

Boundary
condition Complementary Admissible
(in plane) boundary constraint boundary constraint Comments
(a) X1 = 03 fl
Atx1=0 Atx1=,‘€1 Atx1=0 Atx1=)31
(only) (only) (only) (only)
1or3 u; #0; uy1 =0 ayy = — by
u1~2 # 0 g/ln = - /lna
2o0r4 ul,l?éo u1=u1’2=0 aln:l__)ln;
€in =f1n;
2or4 uy,1 #0 Uy =u; =0 C_l1n=—£71n;
C1n = _fln;
lor3 uy #0; u;1 =0 al,,—bl,,;
ul,Z 7£ 0 g/ln ,ln‘
(b) x, =0, x,
AtXZZO AtXZZ)EZ AthZO AtXZZ)Ez
(only) (only) (only) (only)
lor2 u, #0; Uy, =0 Cim = —dim;
Ur1 # 0 €1im = flm:
30r4 ul,z?éo u1=u1’1=0 le:dlms
81im = hlma
Jord Uy, #0 Uy =u;,; =0 Cim = 0_71m,
glm = hlma
1 Orz Uq #07 u1,2:0 C/lm: /lmy
ug, #0 €im=fim-
a o - n 4 :
{”(34,)111(0; X3); “(;,)111(01, X2)} = 2 Z (F &5 — M3 sin(B,x,), 27k, 1)
b & - " "
{u(32,)222(x19 0)3 uE,ZZ)ZZ(xls b)} = Z Z (+ C3m — d3m) COS(O{mxl), (271’1’1, n)
b 2 -_ 4 1! M
{u(;:)zzz(xlz O)s u(?i)zzz(xh b)} = Z Z (+ e3m _f3m) SIH(amxl)’ (2707 p)
a o0
{10, x2); u? (a, x,)} = 1 Y, (F diy — biy)cos(Buxz), i=1,2, (28a, b)
a e o]
{0, x2); ui* (a, x,)} = 2 Y (F g — hiw)sin(Buxy), i=1,2, (28c, d)

B
Il
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TaBLE 14

Symmetrically placed complementary and admissible boundary constraints for the in-plane
displacement u, of a thin laminated doubly curved panel at edges

Comments
Boundary Complementary Admissible
condition boundary boundary Vanishing Non-vanishing
(in plane) constraint constraint coefficients coefficients
(a)x1=0,>€1=a _
lor2 uy # 05 up 5 #0; Uz =0 day = b, = A Z_’an
g2n:h/2n :0 éZn;f2n 750
Jor4 uz,1 #0 Uy =uy,=0 dzy = by, = Ao b
e2n _f2n = g/2m h/Zn 7& 0
(b)xZZO,)Ez:b _
lor3 uy #0; 1z, #0 U, =0 Com = dop = Com; ‘12)71;
e’lm :fzrm = 0 g_lma h2m 7é 0
2or4 Uy #0 uy=uz =0 Com = izzm = Coms dom;

&om = th =0 e/Zm;fZ/m # 0

W3 een 0y (xa, D)} = 3 B (F el — dim)cos(opxy). 1=1.2. (28e.)

-bl@‘

{u)(x1, 0); u)(x1, b Z F € — [im) SIN(0pX1), i=1,2. (28g, h)

AI@‘

7.1.2.2. Example 2: free F1 at all four edges. For free boundary conditions prescribed at all
four edges, the transverse complementary boundary constraints, u; # 0 and u; ; # 0 at
x; =0, X;(= a), while u3 # 0 and uz , # 0 at x, =0, X, (= b), dictate that the boundary
Fourier coefficients— @s,; ban; @303 f3mi @smi Dsni €3m3 Wi Cams Aams &3ms Mams Coms dsms €5 and
f5m—be non-zero (Table 10). Additionally, for the type 1 surface-parallel boundary
condition prescribed at all four edges, the surface-parallel complementary boundary
constraints, u; #0 and u, # 0 at all four edges, dictate that the boundary Fourier
coefficients—ay,; by, elmflna G Do e2n’f2ns Cims d1m7g1m> B Coms d2m>g2m and h,,,—be
non-zero (Tables 12, 14). The corresponding non-zero displacements or their normal
derivatives at the edges are then given as follows:

{uP(0, x5); u§(a, x,)} :% i (F a3, — bs,)sin(B,x2), (29a, b)
(0,50 xa)} = Y (F @~ Fohcos(fa), (29c, d)
e, 0 D) = 7 3 (F o o) sini, ). (29¢.1)
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TaBLE 15

289

Unsymmetrically placed complementary and admissible boundary constraints for the in-plane

displacement u, of a thin laminated doubly curved panel at edges

Boundary
condition Complementary Admissible
(in plane) boundary constraint boundary constraint Comments
(a) X1 = 03 fl
Atx1=0 Atx1=,‘€1 Atx1=0 Atx1=)31
(only) (only) (only) (only)
1or2 uy #0; Uy =0 a/Zn = — bh;
Uz #0 g = — hh;
3or4d uZ,l?éo UZZUZ’ZZO aZn:l_)Zn;
€2n =f2n;
Jor4 Uz #0 Uy =1 ,=0 c_lZn:_Z)Zn;
é2n - _on;
1or2 uy #0; Uy =0 oy = by;
Uz,z # 0 g/Zn = h’2n
(b) x5 =0, X,
AtXZZO AtXZZ)EZ AthZO AtXZZ)Ez
(only) (only) (only) (only)
lor3 Uy # 0, Uy = 0 C/2m = ’2ma
u2-1 7& 0 e/Zm f2m:
2or4 uz.2 # 0 Uy =y 1 =0 Copm=dop;
me = tha
2or4 Uy, #0 Uy =1up 1 =0 Com = Csz
me th:
lor3 U, #* 07 U o = 0 C/2m = d/Zma
Uy #0 €m = fim
4) “4) b & T & T
{us (xl, 0)9 (xlz b)} = Z Z (+ 8g3m — h3m) COS(O(mxl), (29ga h)
m=0
a - —_ ’ L
Lu(32)1(0 x2) u3 1(a XZ)} Z Z (+ asy Sn) COS(ﬂHXZ)’ (291a])
n=0
a Z _ .
{u (0 X2 u(3 )1 ((l XZ)} Z z (+ g,Sn - h,3n) Sln(ﬁnXZ)a (291{, 1)
n=0
b 00
{u(Z) (xly M(Z) xla b)} - Z Z (1 c,3m - d/3m) COS(O(mxl), (291’1’1, n)
m=0
(g b & o
u (xla O) u3 2(x1a b)} = Z Z (+ €3, _f3m) Sln(amxl)a (2907 p)
m=0
1 1 a & T Vo
{u( )(0 x2) ( )(a XZ)} Z Z ('T' Ain — bin) Sln(ﬁnXZ)a i= 19 27 (303, b)
n=0
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W0, %2 ua, )} =5 Y (F &y~ Fueos(Bx), i =12 (30c,d)
n=0
) . (1) LR 7 Vg i1 9
{ui (xls O)a u; (xla b)J - Z Z (+ Cim — dzm) Sln(amxl)y 1= 1: 2a (3063 f)
m=0
4) c (4 _b - T A
{ui (xla 0)9 ui (xlr b)} - Z Z (+ 8im — hlm) COS(OCmXI). (30g5 h)
m=0

7.1.2.3. Example 3: simply supported SS2 at all four edges. For simply supported boundary
condition prescribed at all four edges, the transverse complementary boundary constraints,
u3!1 ?é O and u3,111 ?é 0 at X1 = 0,21(: a), Whlle M3’2 ?é O and M3,222 75 O at the Other tWO

" ” ’

dictate that the boundary Fourier coefficients—a’%,,; b5,; €55 W35 @305 D303 €505 Nans Cams A3
Sy [ams Coms dam; €3m; fam—Dbe mnon-zero (Table 10). Additionally, for the type
2 surface-parallel boundary condition prescribed at all four edges, the surface-parallel
complementary boundary constraints, u; ; #0 and u, ; #0 at two opposite edges,
x; =0, X;(= a), while u; # 0 and u, # 0, at the other two opposite edges, x, = 0, X, (= b),
dictate that the boundary Fourier coefficients—a’,,; b1,; 1n Wins @ani Do €2 foni Cms dim;
Gimi Nims Coms domi €5m; f3m—be non-zero (Tables 12 and 14). The corresponding non-zero

displacements or their normal derivatives at the edges are then given as follows:

{u§ 0, x2); u§) (a, x2)} = (F d3n — b3,) cos(fx2), (31a, b)

-hl&
D18

n=0

{0, x2); ul) (@, x,)} = (F ghn — M) sin(Bux2), (31c, d)

A~
DM1s

n=0

b 00
{u(32)2 xla (x17 b)} - Z Z + C,3m - d/3m) COS(O(mxl), (3167 f)
m=0
fu -, (3) b & , ’ 1
\L (xla )7 u3,2(x19 b)} = Z Z (+ €3m _f3m) Sln((xmxl), (31g’ h)
m=0
a - —_— ” . e
{u(?,z,)lll(os x2); u(32,)111(aa XZ)} = Z Z (+ a3, — b3n) COS(ﬁan), (311a.])
n=0
a - - " 4 :
(S 1100, x2); uS?) 1 (a, x5)} = 1 Y. (F gsn — hia)sin(B,x,), 31k, 1)
n=0
(2) . ,(2) b & o0
{u:«),zzz(xl, 0); u3,222(x17 b)} :Z Z (F am — d3m) COS (04X 1), (31m, n)
m=0
(3) . .,(3) b E —_— 17 -
{u3,222(x1a0)>u3,222(x17b)} :Z Z (“F €3m —f3m)Sll’l(Ome1), (3103 P)
m=0
a - - ! /
\L (0 xZ) u(l )1 (a XZ)} = Z Z (+ iy — bln) Cos(ﬁan)a (323, b)

n=0
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Wi (0, x2); ui) (@, x2)} = (F &in — hin)sin(Bux2), (32¢, d)

Al
M8

n=0

(1 Elm - Jlm) Sin(amxl)a (3267 f)

0

{u(ll)(xb 0)5 ¢ )(xlab)} =

ENI~
3
118

b & _
Jl’u(14.)(x1: O)a u(14)(x1, b)} = Z Z (? glm - hlm) cos(otmxl), (32g: h)
m=0
a & - . ..
{“(21)((); XZ) ¢ )(a XZ)} = Z Z (1 dZn - bzn) Sln(ﬂHXZ)a (321’ J)
n=0
(W90, X uP (@ x)} =5 Y (F éan — o) cos(Byxa), (32K, )
n=0
(2) (2) b - ’ '
{uz 5(x1,0 h (X1, b)}‘ =2 Z F Chm — dam) cOS (00X 1), (32m, n)
m=0
(3) b - —_— / .
{uz 2 xl: 2 2(x17 } = Z Z (+ €om _me) Sln(amx1)~ (3209 p)
m=0

7.1.2.4. Example 4: clamped C4 at edges x; = 0, Xx{(= a) and simply supported SS2 at edges
x, =0, X, (=b). For clamped boundary condition prescribed at two opposite edges,
x; =0, X;(=a), the transverse complementary boundary constraints, u; ;; #0 and
us3. 111 # 0, dictate that the boundary Fourier coefficients—as,; bay; Can f3,,, A3ys Dans Gans
in—Dbe non-zero (Table 10). Additionally, for the type 4 surface-parallel boundary
condition prescribed at the two opposite edges, x; =0, x{(= a), the surface-parallel
complementary boundary constraints, u; ; # 0 and u, ; # 0, dictate that the boundary
Fourier coefficients—a’,,; b1, €15 Win; a5 Doy €ha; hs,—Dbe non-zero (Tables 12, 14).
Likewise, for simply supported boundary condition prescribed at the two opposite edges,
X, =0, X,(=b), the transverse complementary boundary constraints, u; , 75 0 and
U322, # 0, dictate that the boundary Fourier coefficients—c3,,5 d3m; €3ms fams C3ms A3ms €3m;
3m—Dbe non-zero (Table 10). Additionally, for the type 2 surface-parallel boundary
condition prescribed at the two opposite edges, x, =0, X,(=b), the surface-parallel
complementary boundary constraints, u; #0 and u, , # 0, dictate that the boundary
Fourier coefficients—¢ 5 d1mi Z1m: Pimi Coms dom; €amifom—be non-zero (Tables 12 and 14).
The corresponding non-zero displacements or their normal derivatives at the edges are then
given as follows:

az _ _ .
{”(31,)11(0: Xz); ”(3,1,)1 1 (a, Xz)} = Z Z (+ a - b3n) Sln(ﬂnXZ)a (333-; b)
n=0
aZ _ _ =
{u(yi)ll(07 Xz); ug)ll(aa xl)} = Z Z (+ €3, _f3n) Cos(ﬁnXZ)a (330, d)
n=0
a = - /) "
{u(32,)111(03 x2); u(32,)111(aa Xz)} = Z Z (+ az, — b3n) Cos(ﬁnXZ)a (3369 f)

B
Il
o
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a = - 4 " :
{”(34,)111(05 X2); “(34,)111(% X))} = 4 Z (F &30 — h34) sin(B,x5), (33g, h)
n=0
(2) (2) b & / ' P
{u3 2 xla > u3,2(x1a b)} = Z Z (“F Cam — d3m) COS(O(mxl), (331’.1)
m=0
(3) (2) 1 — b &~ ’ / :
{u (xlyo) u3 2(x1a b)J _Z Z (+ €3m _f3m) Sln(fxmxl)s (33k9 1)
m=0
b > - 4 1
(US55 (x4, 0); u),,(x1, b)} =3 Y (F o — d,) cos(a,x4), (33m, n)
m=0
b - - 4 " 1
{00061, 0505 (61, D)} = 5 3 (F € — fim)sin (), (330.p)
m=0
a o0
(U (0, x2); u?) (a, x,)} = I Y, (F diw — bia)cos(Bx2), (34a, b)
n=0
a - —_— ’ :
1“34)1(0 X,); uj )1(a xz)} 4 Z (F gin — K1) sin(B,x5), (34c, d)
n=0
a ®
{0, x2); u$, (@, x,)} = 1 Y (F day — b,)cos(f,x), (34e, 1)
n=0
a & _— ’ .
{uSh (0, x2); us”, (@, x,)} = I Y (F ghn — hiy)sin(f,x2), (34g,h)
n=0
(1) ., (1) ! _b S (= = 7 H s
{ul (x1)0)9u1 (xlab)f _Z Z (+ Cim — dlm)snl(amxl)a (341:.])
m=0
b & -
{U(14)(X1, O)a M(14)(X1, b)} = Z Z ($ glm - hlm)COS(Omel), (34k, 1)
m=0
h @
(WS (o0, 0 uPy(x1, D)} = 2 X (F o — dim) COS(am 1) (34m, n)
m=0
b d - r :
(000, 005 061, D)} =7 X (F € — fiu) sin(z ). (340, p)
m=0

7.1.2.5. Example 5: clamped C4 at edge x; =0, free F1 at edge x; = x{(= a), roller-skate
RS3 at x, =0 and simply supported SS2 at edge x, = x,(=b). For clamped boundary
condition prescribed at the edge, x; =0, the transverse complementary boundary
constraints, u3;; #0 and wuj ,q; #0, dictate that the sum of boundary Fourier
coefficients—as, + b3,,, Gy + fan: i, + b%,; and g4, + h3,—be non-zero. Furthermore, at
the edge x; = 0, the transverse boundary constraints, u3 = 0 and u3 ; = 0, dictate that the
boundary Fourier coefficients—ds,(= — b3,); @3n(= —f3,); dsn(= —b5,) and
g5,(= — h3,)—Dbe non-zero (Tables 11). For the free boundary condition prescribed at the
edge, x; = X;(=a), the transverse complementary boundary constraints, u; # 0 and
usy #0, dictate that the sum of boundary Fourier coefficients—as, — bs,;
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@3 — fm: a5, — b5, and g5, — h,—be non-zero. Additionally, at the edge, x; = X,(= a),
the transverse boundary constraints, uz ;; = 0 and u3 1,, = 0, dictate that the boundary
Fourier coefficients—ds,(= bs,); &3u(=fan); dan(=b%,) and g%.(= h%,)—be non-zero
(Table 11). The corresponding non-zero transverse displacements or their normal
derivatives at the edges x; = 0, X;(= a), are then given as follows:

ud, (0, x,) g g Aysin(B,xs), U, (0, x,) g g Eyncos(fuxa),  (35a,b)
uPy 110, x5) = — 5 Z d53,€08(Bux2), uS (0, x,) = — = Z gsasin(f,x,),  (35¢,d)
ud(a, x,) = gi ssin(Byxa), uP(a, x,) = gi &3 COS (B X2), (35¢, f)
w2 (a, x,) = gi sy c08(Bux2), 1Y) (@, x,) —g 2 2 Sin(fuxa). (35, h)

For the type 4 surface-parallel boundary condition prescribed at the edge x; = 0, the
surface-parallel complementary boundary constraints, u; ; # 0 and u, ; # 0, dictate that
the sum of boundary Fourier coefficients—ay, + b,; d5, + b, gin + hi,; and
ghn + h,—be non-zero. Furthermore, at the edge x; =0, the boundary constraints,
u; = u, = 0, dictate that the boundary Fourier coefficients—ay,(= — by,); €1,(= — f1u);
dn(= — bs,); @34(= — fon)—be non-zero (Tables 13(a), 15(a)). Likewise, for the type 1
surface-parallel boundary condition prescribed at the edge x; = a, the surface-parallel
complementary boundary constraints, u; # 0 and u, # 0, dictate that the algebraic sum of
boundary Fourier coefficients—ay, — by,; €1, — fin; 2n — b2y, and &,, — f>,— be non-zero.
Additionally, at the edge x; = a, the surface-parallel boundary constraints, u; | = u, ; =0,
dictate that the boundary Fourier coefficients—a},(= b},); d2.(= b%,); g1.(= h1,) and
Zo.(= h%,)—be non-zero (Tables 13(a), 15(a)). Finally, the corresponding non-zero
surface-parallel displacements or their normal derivatives at the edges x; = 0, X; (= a), are
then given as follows:

U2, (0, x,) = —gnio dy,c0s(Bux2) U (0, x,) = i gusin(fuxa), (363, b)
1050 = =5 3 dhyeos(fxad w0x) = =5 Y gsinf. (6o
WD (a, x,) = gio dnsin(Buxs), u(a, x,) = g ni &1, cOS(Buxa), (36e, f)
U0, x,) = — = Z gonsin(fuxs), ul(a, x5) g g L Sin(fuxa). (36g, h)

For the roller-skate boundary condition prescribed at the edge x, = 0, the transverse
complementary boundary constraints, uz # 0 and uz ,, # 0, dictate that the sum of
boundary Fourier coefficients—¢s, + dsm; Sam + Rsm; Cam + dsm and Zsm + ham—be
non-zero. Furthermore, at the edge x, =0, the transverse boundary constraints,
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’

Uy = U320 = 0 dictate that the boundary Fourier coefficients—c5,,(= — d5,);
(= — fim); Cim(= —d5,) and e5,,(= — f3m)—be non-zero (Table 11). For the simply
supported boundary condition prescribed at the edge x, = 0, the transverse complementary
boundary constraints, u; , # 0 and u3 222 # 0, dictate that the sum of boundary Fourier
coefficients—c5,, + dsm; €3m + f3m; C3m + d3m and €5, + f3»—Dbe non-zero. Additionally, at
this edge, the transverse boundary constraints, uy = u3 ,, = 0, dictate that the boundary
Fourier coefficients—¢s,(= dap); Z3m(= Nam); Cam(= d3n) and gzm(= hsn,)—be non-zero
(Table 11). The corresponding non-zero transverse displacements or their normal
derivatives at the edges x, = 0, b, are then given as follows:

b 2 b &
u(xy,0) = —3 Y Eymsin(o,xq), u§’(xy,0) —3 z 3m COS (0L X 1), (37a,b)
m=0 m=
u) b & . ; (4) b &
us, 22(x1»0) 5 Z CSmSIn(Omel)p u3’22(x1, = —5 Z &g3m COS o xl) (37C, d)
m=0 m=

b o b
u(32,)2(x1’ b) = 5 Z Cam COS(OCmXI), u(;i)z(xlz b) = 5 z €3m Sln((xmxl)’ (376» f)
m=0 m=0
h @ , h =
Whaa(x1b) =5 X chncostmxi). #h(xib) =5 3 elnsin(ox,) (37g h)
m=0 m=0

For the type 3 surface-parallel boundary condition prescribed at the edge x, = 0, the
surface-parallel complementary boundary constraints, u; , # 0 and u, , # 0, dictate that
the sum of boundary Fourier coefficients—c},, + dim; €im + fim; Com + d>, and
€ym + fom—Dbe non-zero. Furthermore, at this edge the surface-parallel boundary
constraints, u; = u, = 0, dictate that the boundary Fourier coefficients—é;,,(= — d,);
Sim(= — him); Com(= —dso,) and Zm(= — hy,)—be non-zero (Tables 13(b), 15(b)).
Likewise, for the type 2 surface-parallel boundary condition prescribed at the edge x, = b,
the surface-parallel complementary boundary constraints, u; # 0; u, # 0; dictate that the
algebraic sum of boundary Fourier coefficients—¢y,, — dim: Z1m — Pim; Com — dam and
Zam — hym—be non-zero. Additionally, at this edge, the surface-parallel boundary
constraints, u; , =, , = 0, dictate that the boundary Fourier coefficients—c/,,(= d},.);
(= fim); Chim(=d5,) and é5,,(=f3,,)—be non-zero (Tables 13(b), 15(b)). Finally, the
corresponding non-zero surface-parallel displacements or their normal derivatives at the
edges x, = 0, b, are then given as follows:

b & b &
u(f,’z(xl,O)= ~3 Y CimCoS(dyxy), uf)z(xl, =-3 Z €'t SIN (0, X 1), (38a, b)
m=0 m=0
(2) b & / (3) b &
(x1, 0) = ) Z Cm COS (Ol X 1), “2,2(x1,0): ) Z €5, SIN (00, X 1), (38c,d)
m=0 m=0
(1) b ¢ ~ 1 (4) b & >
ul (xla b) :E Z ClmSIH(mexl)a ul (xlab) = E Z glmCOS(Omel), (3869 f)
m=0 m=0
(1) b & . 3 4) b &
u, (xla b) = E Z Com SIH(amxl)» u, (xla b) = E Z 8am COS(Omel). (38g’ h)
m=0 m=0
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7.1.2.6. Example 6: clamped C4 at edge x, = 0, simply supported SS2 at edge x, = X,(= b),
roller-skate RS3 at x, =0 and free F1 at edge x, = X,(=b). For the combination of
clamped boundary condition prescribed at the edge, x; = 0, and the simply supported one
at x; = X;(=a), the transverse complementary boundary constraint, u; ;;; # 0, is
symmetrically placed, which, consequently, demands that the boundary Fourier
coefficients—a3,, b%,, g3, and h3,—be non-zero. Furthermore, for clamped boundary
condition prescribed at the edge, x; =0, the transverse complementary boundary
constraint, us ;; # 0, dictates that the sum of boundary Fourier coefficients—as,, + b, and
&3, + f3n—Dbe non-zero. Additionally, at the edge, x; = X,(= a), the transverse boundary
constraint, u3 ; = 0, demands that the boundary Fourier coeflicients—as,(= bs,) and
&3,(= f3n,)—be non-zero (Table 11). The corresponding non-zero transverse displacements
or their normal derivatives at the edges x; = 0, X; (= a), are then given as follows:

{u(32,)1 11 (0, Xz); u(32,)1 1 1((1, XZ)} = ($ agn - bgn) COS(,[))nxz), (393, b)

EN IS
s

n=0

(4 !

WS 1100, x2);uS 14 (@, x2)} = (F &3n — h3a)sin(f,x2), (39¢, d)

Al Q
s

n=0

al _ . a Zl _
M3 11(0 xZ 5 Z d3n Sln(ﬁnXZ)a 3 11(0 x2 5 Z €3y ﬁnXZ) (396» f)
a & a s, .
“(32,)1 (a,x5) = 5 Z 3, cos(f,x2), ”(34,)1 (a, x5) = B Z gansin(f,x,). (39g, h)

0 n

n 0

For the combination of type 4 surface-parallel boundary condition prescribed at the edge,
x; = 0, and the type 2 one at x; = 0, X;(= a), the surface-parallel complementary boundary
constraints, u; 1 # 0;u, 1 # 0, dictate that the boundary Fourier coefficients—aj,, b1, g1n

Lns A2y D5y 85, and h5,—be non-zero. Finally, the corresponding non-zero surface-parallel
displacements or their normal derivatives at the edges x; = 0, X;(= a), are then given as
follows:

{20, x2); u? (a, x5)} =

AIQ

Z Aip — m) Cos(ﬂnXZ)a i= 13 2, (403, b)

{l/l(4) O X2 z 1 a XZ)} - g Z (+ gm - h;n) Sin(ﬁnXZ)a i= 17 2. (400’ d)
n=0
For the combination of roller-skate boundary condition prescribed at the edge, x, = 0,

and free boundary condition at x, = b, the transverse complementary boundary constraint,
uz # 0, demands that the boundary Fourier coefficients—=¢s,, dsm Z3m and hs,,—be
non-zero. Additionally, for the roller-skate boundary condition prescribed at the edge
x, = 0, the transverse complementary boundary constraint, us ,, # 0, dictates that the sum
of boundary Fourier coefficients—¢5,, + ds,, and 33, + h3m—be non-zero. For the free
boundary condition prescribed at the edge x, = b, the tranverse boundary constraint,
us.,, = 0, dictates that the boundary Fourier coefficients—Cs,,( = d3,,) and g3,,(= h3,,)—be
non-zero. Additionally, at the edge x, = b, the transverse complementary boundary
constraint, u;, #0, dictates that the algebraic sum of boundary Fourier
coefficients—c5,, — d5,, and e5,, — f3,—be non-zero. Furthermore, at the edge x, = 0, the
transverse boundary constraint, u;, =0, dictates that the boundary Fourier
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coefficients—c5%,, = — d3,,; €3m = — fam—be mnon-zero (Table 11). The corresponding
non-zero transverse displacements or their normal derivatives at the edges x, = 0, b, are
then given as follows:

($ c_3m - d_3m) Sin(amxl)a (4135 b)

0

(U (xy, 0); U (xy, b)) =

S L~

ﬁMa ng

{u(34>(x1, 0); u(34)(x1, b)} = (F &3m — E3m) CoS (0t X 1), (41c,d)

0

b & _ b & _
u§s 5 (x4, 0) -3 Z Camsin(,x1),  u$,(x1, 0) -5 Z Samcos(o,xy),  (4le,f)
b & b 2
Wb =5 3 cancosnxy). uy(xab) =3 3 cansin(ai) (41g h)

0

m

For the type 3 surface-parallel boundary condition prescribed at the edge, x, = 0, the
in-plane complementary boundary constraints, u; , # 0 and u, , # 0, dictate that the sum
of boundary Fourier coefficients—c’,, + dim; €im + fim; Com + dam and e, + f3,—be
non-zero. Furthermore, at this edge the surface-parallel boundary constraints, uy = u, =0,
dictate that the boundary Fourier coefficients—¢ (= — di); 81m(= — him)i Com(= — day)
and Z,m(= — hy,)—be non-zero (Tables 13(b), 15(b)). Likewise, for the type
1 surface-parallel boundary condition prescribed at the edge x, = b, the surface-parallel
complementary boundary constraints, u; # 0, and u, # 0, dictate that the algebraic sum of
boundary Fourier coefficients—¢1, — dim; Sim — Nim; Com — dam and gy — hayp—be
non-zero. Additionally, at this edge the surface-parallel boundary constraints,
Uy, = U, , =0, dictate that the boundary Fourier coefficients—c},,(= d1,); €1m(=fim);
Chm(=d5,,) and é€5,,(= f3,,)—be non-zero (Tables 13(b), 15(b)). Finally, the corresponding
non-zero surface-parallel displacements or their normal derivatives at the edges x, = 0, b,
are then given as follows:

U200 0= =3 % nooslonr), W, 00= =3 ¥ chusinmx). @42,

0

NS oS

§HM8 ﬁMS

Z 2m COS o xl) u(z?),)z(xla 0) = - €2m Sin(am-xl)a (42Ca d)

Z C_lm Sin(amxl)» u(14)(x17 b) = glm COS((mel), (4269 f)

0

82m COS(tm X1). (42g, h)

oS NSRS

ﬁMs ﬁMg

o0
Z ComSIN(0, X 1), u(24’(x1,b)=

0
7.2. AN ARBITRARILY LAMINATED THIN ANISOTROPIC DOUBLY CURVED GENERAL PANEL
SUBJECTED TO UNIFORM TRANSVERSE PERIODIC LOADING

This is a special case of the example, considered in the preceding section. The transverse
periodic loading in equations (16) is given by

g1 =¢> =0, q3(x1,X2) = Ppo, (43)
where p, is given by equations (25a) and (26a).
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Following an identical procedure as above, an examination of equations (16) reveals that
v u@ Ul U UP U are coupled through the presence of Q%) and the
corresponding particular solution functions will be necessary and sufficient to furnish the
appropriate particular solution to the system of three PDEs given by equations (16). The
remaining Fourier coefficients will drop out.

With regard to the complementary solution, the boundary Fourier coefficients are limited
tO @3, bys s D343 Cams A3ms Cams dims Azns Dany A3y D3y Cams dams s A3 &1ns Mins L2 Mo
ellma f{m’ e/2m7 f2/m7 e_lna fln; e_Zns on; glma hlm; me and h2m (See Tables 10_15) For the six
examples of boundary-value problems considered in section 7.1, only non-vanishing
boundary transverse and surface-parallel displacements and their normal derivatives in
equations (27)-(42) are those that correspond to these boundary Fourier coefficients. The
remaining boundary Fourier coefficients will vanish, and so will the corresponding
transverse and in-plane boundary displacements, and their normal derivatives in equations
(27)-(42).

Various special cases of lamination will be considered below.

7.2.1. Antisymmetric angle-ply doubly curved panel

For this type of lamination,
A16:A26:B11 :BIZZBZZZB66:D16:D26:0' (44)

Substitution of equation (44) into equations (16), followed by an examination of the
reduced equation reveals that U} is coupled to U U U and U through the

1mn> 1mn> 2mn
presence of Q) . In addition, U , U U and US?) are coupled to U , even though

1mn> 1mn> 2mn 2mn
0 = 0. The corresponding solution functions will be necessary and sufficient to furnish
the appropriate particular solution to the system of three PDEs given by equations (16).
The remaining Fourier coefficients will drop out. The complementary solutions for various
combinations of prescribed boundary conditions are the same as those for the arbitrarily

laminated case discussed above.

7.2.2. Symmetric angle-ply doubly curved panel

For this lamination,
Ays=B;;=0,i,j=1,2,6. (45)

Substitution of equation (45) into equations (16), followed by an examination of the
reduced equation will reveal that U$!) is coupled to U .UM U and USY through the
presence of Q4! . In addition, U , U U and US?) are coupled to UY) , even though
0 = 0. The corresponding solution functions will be necessary and sufficient to furnish
the appropriate particular solution to the system of three PDEs given by equations (16).
The remaining Fourier coefficients will drop out. The complementary solutions for various
combinations of prescribed boundary conditions are the same as those for the arbitrarily

laminated case discussed above.

7.2.3. General (unsymmetric) cross-ply doubly curved panel

For this lamination,

A6 = Aze = Ass = Big = Byo = D16 = D26 = 0. (46)
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Substitution of equation (43) into equations (16), followed by an examination of the
reduced equation reveals that U{) | U® U® and U® are coupled through the presence

3mn> 1mn> 1mn 2mn

of Q) . The corresponding solution functions will be necessary and sufficient to furnish the
appropriate particular solution to the system of three PDEs given by equations (16). The
remaining Fourier coefficients will drop out.

With regard to the complementary solution, the boundary Fourier coefficients are limited
tO0 @3n, b3us Cams d3ms @3n> D3n; Cams d3ms &1ns Nins Camsf2ns &im> Pims €2m» and f3,, (see
Tables 10-15). For the six examples of boundary-value problems considered in section 7.1,
only one-vanishing boundary transverse and surface-parallel displacements and their
normal derivatives in equations (27)-(42) are those that correspond to these boundary
Fourier coefficients. The remaining boundary Fourier coefficients will vanish, and so will
the corresponding transverse and in-plane boundary displacements, and their normal
derivatives in equations (27)-(42).

A solution to this special case, including numerical results, has been presented by
Chaudhuri and Kabir [18] for the SS2-type simply supported boundary conditions
prescribed at all four edges. Furthermore, solutions to the special cases of isotropic doubly
curved and cylindrical panels for the same boundary condition have also been presented by
Chaudhuri and Kabir [19], and Kabir and Chaudhuri [20] respectively.

In addition, it is noteworthy that the assumed double Fourier series solutions,
corresponding to the above Fourier coefficients will satisfy the SS3-type simply supported
boundary conditions, prescribed at all the four edges and given by equation (19c). Finally,
the present solution, for an isotropic cylindrical panel with the SS3-type simply supported
boundary conditions prescribed at all the four edges, reduces to the corresponding Navier
solution given by Timoshenko and Woinowsky-Krieger [3].

7.3. AN ARBITRARILY LAMINATED THIN ANISOTROPIC RECTANGULAR PLATE
SUBJECTED TO UNIFORM TRANSVERSE PERIODIC LOADING

An arbitrarily laminated anisotropic plate can be treated as a special case of the
corresponding doubly curved panel by substituting

1/R, = 1/R, = ¢ = 0. (47)

The uniformly distributed transverse load is given by equations (43), (25a) and (26a).
Substitution of equation (47) into equations (16), followed by an examination of the
reduced equation reveals that U} and U{), are coupled through the presence of Q%) .
Additionally, U U U and USY  are coupled. The corresponding solution
functions will be necessary and sufficient to furnish the appropriate particular solution to
the system of three PDEs given by equations (16). The remaining Fourier coefficients will
drop out. The non-vanishing complementary solutions for various combinations of
prescribed boundary conditions are the same as their counterparts for arbitrarily laminated
doubly curved panels discussed in section 7.2.

The following special cases of lamination will be considered.

7.3.1. Antisymmetric angle-ply rectangular plate

Substitution of equations (44) and (47) into equations (16), followed by an examination of
the reduced equation reveals that U{) is needed because of the presence of QY

3mn 3mn®
Additionally, U} is coupled to U? and USY . The corresponding solution functions

2mn*
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will be necessary and sufficient to furnish the appropriate particular solution to the
system of three PDEs given by equations (16). The remaining Fourier coefficients will drop
out.

The non-vanishing complementary solutions for various combinations of prescribed
boundary conditions are limited to @z, bani C3ms A3m: Gans Pani C3ms Aams €1ms fini €1 fim
s Mani 8am and h,,, (see Tables 10-15). For the six examples of boundary-value problems
considered in section 7.1, only non-vanishing boundary transverse and surface-parallel
displacements and their normal derivatives in equations (27)—(42) are those that correspond
to these boundary Fourier coefficients. The remaining boundary Fourier coefficients will
vanish, and so will the corresponding transverse and in-plane boundary displacements, and
their normal derivatives in equations (27)—(42).

Whitney and Leissa [21] have shown that the assumed double Fourier series particular
solution functions, corresponding to the aforementioned Fourier coefficients, will satisfy the
SS2 (S3 according to the nomenclature used by Jones [2]) type boundary conditions, given
by equation (19b).

7.3.2. Symmetric angle-ply rectangular plate

Substitution of equations (45) and (47) into equations (16), followed by an examination of
the reduced equation reveals that UY) and U{) are needed because of the presence of

3mn
Q%) . The corresponding solution functions will be necessary and sufficient to furnish the
appropriate particular solution to the PDE given by equation (16¢). The remaining Fourier
coefficients will drop out. It may be noted that unlike their counterparts for a shell, the
in-plane displacement components vanish at the reference (middle) surface of
a symmetrically laminated plate, and hence play no role in either the governing PDE or the
boundary conditions.

The non-vanishing complementary solutions (transverse displacements or deflections
only) for various combinations of prescribed boundary conditions are similar to their
counterparts for symmetric angle-ply doubly curved panels discussed in section 7.2.2.
Solution to this special case, including numerical results, has been presented by Whitney
[15] for the clamped boundary conditions prescribed at all four edges.

7.3.3. General (unsymmetric) cross-ply rectangular plate

Substitution of equations (46) and (47) into equations (16), followed by an examination of
the reduced equation reveals that U}  U'? and U)) are coupled through the presence of

3mn> 2mn

Q) . The corresponding solution functions will be necessary and sufficient to furnish the
appropriate particular solution to the system of three PDEs given by equations (16). The
remaining Fourier coefficients will drop out. The complementary solutions for various
combinations of prescribed boundary conditions are same as their doubly curved panel
counterparts discussed in section 7.2.3. In addition, it is noteworthy that the assumed
double Fourier series solutions, corresponding to the above Fourier coefficients will satisfy
the SS3-type simply supported boundary conditions, prescribed at all the four edges and
given by equation (19c).

In the case of a symmetrically laminated cross-ply plate, the in-plane displacement
components, as expected, vanish at the middle surface. Only UY) is needed because
of the presence of Q) . The present solution for a homogeneous isotropic clamped
plate reduces to its counterpart given by Green [12]. Finally, the present solution for an
isotropic simply supported plate reduces to the corresponding Navier solution (see

reference [3]).
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8. FREE UNDAMPED VIBRATION OF THIN LAMINATED SHELLS/PLATES

Substitution of ¢; = 0 into equations (16) renders the problem to that of eigen-BVP. Here
the primary goal is to determine the eigenvalues (natural frequencies) and the corresponding
eigenfunctions (mode shapes). In some sense, this class of solutions is more fundamental
than its forced vibration counterparts, because once the eigenfunctions are known, they can
serve as the bases for the expansion of unknown solution functions for the forced vibration
problem discussed above.

8.1. FREE UNDAMPED VIBRATION OF THIN ARBITRARILY LAMINATED DOUBLY CURVED
PANELS

Case 1. Examination of equations (16) in conjunction with g; = 0 reveals that U{) |

v, ul . ul U U are coupled, and the corresponding particular solution
functions will be necessary and sufficient to furnish an appropriate particular solution to the
system of three PDEs given by equations (16). The remaining Fourier coefficients will drop
out. This case is similar to section 7.2 already discussed. The same holds for the
complementary solution.

Case 2. Examination of equations (16) in conjunction with g; =0 reveals that an
alternate set of eigenfunctions are also possible. For an arbitrarily laminated doubly curved
panel, US) . U U UR 0 US) and U, are coupled, and the corresponding
particular solution functions will be necessary and sufficient to furnish an alternative
particular solution to the system of three PDEs given by equations (16). The remaining
Fourier coefficients will drop out.

With regard to the complementary solution, the boundary Fourier coefficients 3,030
a%nsb%n; 53m>€3m; C%mid%m; a=3gab3n; (1/3,,,, gn;_c=3mad3m; Cgm> gma g/ln’hlln; g/Zns /2n7 ellm’fllm;
s foms CimsSins €ans fons &imshim; &2m and h,, that correspond to vanishing particular
solutions will automatically be zero (see Tables 10-15). The remaining boundary Fourier
coeflicients and the corresponding transverse and surface-parallel boundary displacements
and their normal derivatives will be non-zero depending on the prescribed boundary
conditions. These are as given by their counterparts discussed in section 7.1.

The following special cases of lamination are considered.

8.1.1. Antisymmetric angle-ply doubly curved panel

Examination of equations (16) in conjunction with ¢; = 0 and equation (44) reveals that
two cases are possible, which are similar to their arbitrary lamination counterparts
discussed above (see also section 7.2 for Case 1).

8.1.2. Symmetric angle-ply doubly curved panel

Examination of equations (16) in conjunction with ¢; = 0 and equation (45) reveals that
two cases are possible, which are similar to their arbitrary lamination and antisymmetric
angle-ply counterparts discussed above (see also section 7.2 for Case 1).

8.1.3. General (unsymmetric) cross-ply doubly curved panel

Examination of equations (16) in conjunction with g; = 0 and equation (46) reveals that
four cases are possible. Case 1 is similar to its forced vibration counterpart pertaining to
uniform transverse periodic loading discussed in section 7.2 and has been utilized (see
reference [18] for solution and numerical results for the SS2-type boundary conditions
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prescribed at all four edges). Case 2 involves coupling of U, with U and U . Case 3 is
characterized by coupling of U$) with U?) and U} . while Case 4 involves coupling of
UsY with UlY) and UD).

With regard to the complementary solution, the boundary Fourier coefficients, in the
four cases, are limited to the following (see Tables 10-15):

o T D= 7 - i - A 7 . / ! - 5 7 D= 1, . ! 4
Case 1. a3mb3m C3m>d3m7 a3nab3m C3mad3m7 glnahlna €2n+)2n5 g1m7h1_m7 €2m andfgm~
/ ro. ’r. ” "o, "o, / . ! . 5 - o
Case 2. a3m£)3ns CSm’_d?)ma a3m= 3n> (/3m9= 3m> 2ns12n5 elmiflm, elnsflna 8om and th'
>3 = - 5 - . N ’ - .- A . ! !
Case 3. €35,/ 3n5 g3mah3ms €3n3/3n5 g3m»h3m9 clnadlna a2n’b2n5 clmﬂd_lmy dom and IZZm'

" " "

’ VA ro. .o RPN . A . =
Case 4. €513 &3m>M3ms €3naf3n5 &3msWams Cansdans Aimsbims A1nsb1n; Com and dyyy.

For the six examples of boundary-value problems considered in section 7.1, only
non-vanishing boundary transverse and surface-parallel displacements and their normal
derivatives in equations (27)—(42) are those that correspond to these boundary Fourier
coefficients. The remaining boundary Fourier coefficients will vanish, and so will the
corresponding transverse and in-plane boundary displacements, and their normal
derivatives in equations (27)-(42).

8.2. FREE UNDAMPED VIBRATION OF THIN ARBITRARILY LAMINATED RECTANGULAR
PLATES

Examination of equations (16) in conjunction with g; = 0 and equation (47) reveals that
two cases are possible. Case 1 is similar to its forced vibration counterpart pertaining to
uniform transverse periodic loading discussed in section 7.3. Both the cases are similar to
their doubly curved shell counterparts discussed in section 8.1.

The following special cases of lamination are considered.

8.2.1. Antisymmetric angle-ply rectangular plate

Substitution of g; = 0 in conjunction with equations (44) and (47) into equations (16),
followed by an examination of the reduced equation reveals that four cases are possible.
Case 1 is similar to its forced vibration counterpart pertaining to uniform transverse
periodic loading discussed in section 7.3 (Here U\ is coupled to U{¥) and USY ). Case
2 involves coupling of UY) with U(Y "and UY) . Case 3 is characterized by coupling of
Uy with U and U . while Case 4 involves coupling of U{Y with U?) and U{) .

With regard to the complementary solution, the boundary Fourier coefficients, in the
four cases, are limited to the following (see Tables 10-15):

- T = T . = . = 7 . ro. o /A S S T

Case 1. a3mb3m cSm,d?:m: a3mb3ns c3mad3ma &2nM2n5 elmz[lm: elnzfln’ 8om and h2m'
’ roL .o "o, "o, r . = .= 7, . 4

Case 2. a3m_3n9 ('Sm:_d?rma (13,,,: 3n> c3ms= 3m> glnahlm €2n3)2ns 81m> h_lma €2m andf;Zm'
_ L= .= .= RN . A -

Case 3. €353/ 3n5 g3mah3ma €303/ 3n5 g3m9h3m7 ConsA2on; almaélm9 alna_blna Com and d2m'

" " "

’ A ro. . . Al - - - A /!
Case 4. €3n3)3n5 &3m>"M3ms €3n3)3n5 &3m>MN3m; Cln7d1n7 aZmen: Clmadlma Aom and b2m'

For the six examples of boundary-value problems considered in section 7.1, only
non-vanishing boundary transverse and surface-parallel displacements and their normal
derivatives in equations (27)-(42) are those that correspond to these boundary Fourier
coefficients. The remaining boundary Fourier coefficients will vanish, and so will the
corresponding transverse and in-plane boundary displacements, and their normal
derivatives in equations (27)-(42).
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8.2.2. Symmetric angle-ply rectangular plate

Substitution of equations (45) and (47) and ¢; = 0 into equations (16), followed by an
examination of the reduced equation reveals that two cases of transverse vibration are
possible (it may be noted that transverse and in-plane motions are uncoupled here). Case 1
is similar to its forced vibration counterpart pertaining to uniform transverse periodic
loading discussed in section 7.3. Case 2 involves coupling of U$) and U .

With regard to the complementary solution, the boundary Fourier coefficients, in the two
cases (transverse vibration only), are limited to the following (see Tables 10-15):

Case 1 dSmIZB:n; c_3m7_d3m; a=3m£3n; C=3ma=d3m; a%mb%n; c,3m7d,3m; a/3,m gm Cgm and d/3,m
CaS@ 2 e_3mf3n; g_3mah3m; e=3n,f3n; g=3m>h3m; e,3n>f?;n; g,SmJ hi_’ama egna 3”}1; g,3,m and ,3/>m

For the six examples of boundary-value problems considered in section 7.1, only
non-vanishing boundary transverse displacements and their normal derivatives in
equations (27)-(42) are those that correspond to these boundary Fourier coefficients. The
remaining boundary Fourier coefficients will vanish, and so will the corresponding
transverse and in-plane boundary displacements, and their normal derivatives in
equations (27)-(42).

8.2.3. General (unsymmetric) cross-ply rectangular plate

Substitution of equations (46) and (47) and ¢; = 0 into equations (16), followed by an
examination of the reduced equation reveals that four cases are possible similar to its
doubly curved counterpart discussed above (Case 1 is similar to its forced vibration
counterpart pertaining to uniform transverse periodic loading discussed in section 7.3).

In the case of a symmetrically laminated cross-ply plate, the in-plane displacement
components, as expected, vanish at the middle surface. Only U{}) is non-zero, which are
same as their doubly curved panel counterparts.

The present solution for a symmetrically laminated cross-ply plate directly reduces to

that for a homogeneous orthotropic or isotropic plate without any difficulty.

9. STATIC DEFLECTION OF THIN LAMINATED SHELLS/PLATES

Substitution of C; = 0 into equations (16) reduces the forced vibration BVPs investigated
in sections 7.1-7.3 to their counterparts. Clearly, the same solutions as are obtained for
various laminations, geometries and boundary conditions considered in sections 7.1-7.3 are
valid here (€’* = 1), and will not be repeated in the interest of brevity of presentation.

10. SUMMARY AND CONCLUSIONS

A heretofore unavailable double Fourier series based approach, for obtaining
non-separable solution to a system of completely coupled linear rth order partial differential
equations with constant coefficients and subjected to general (completely coupled)
boundary conditions, has been presented. The method has been successfully implemented
to solve a class of hitherto unsolved boundary-value problems, pertaining to free and forced
vibrations of arbitrarily laminated anisotropic doubly curved thin panels of rectangular
planform, with arbitrarily prescribed (both symmetric and asymmetric with respect to the
panel centerlines) admissible boundary conditions and subjected to general transverse
loading.
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Existing solutions such as those due to Navier or Levy are based on the well-known
method of separation of variables. Such solutions represent particular solutions whenever
the method of separation of variables works, and when these particular solution functions
fortuitously satisfy the boundary conditions. The method of separation of variables for
obtaining particular solutions does not work even for a symmetric angle-ply plate because
of the presence of bending—twisting coupling rigidities, let alone arbitrarily laminated plates
and shells with the exception of cross-ply curved panels. This is because the variables are, in
general, not separable, and more important, boundary conditions are not satisfied a priori.
The present investigation bridges this long-standing analytical gap.

For the derivation of the complementary solution, the complementary boundary
constraints, which are inequalities, play as important a role as the (prescribed) admissible
boundary conditions, which are equalities. The complementary boundary constraints enter
into the picture through boundary discontinuities of some of the particular solution
functions and their partial derivatives. Such discontinuities form sets of measure zero. The
admissible boundary constraints, which are equalities, are conjugates of the associated
complementary boundary constraints, which are inequalities. They are selected at an edge
in a direction normal to that edge in order to guarantee the self-adjointness of the
corresponding one-dimensional differential system.

In the most general case, the particular solutions satisfy N(4mn + 2m + 2n + 1)
equations for arbitrary m, n in terms of as many unknown Fourier coefficients. In order for
this method to furnish a complete solution to the self-adjoint differential system given by
equations (1, 4), 2rN(m + n + 1) additional unknown (boundary Fourier) coefficients must
be furnished by the complementary boundary constraints. For a system of fourth order
completely coupled PDEs, this number reduces to 8 N(m + n + 1) additional unknown
coefficients.

In the case of a boundary-value problem involving a system of completely coupled rth
order PDEs, r mutually independent cases of complementary boundary constraints are
possible. These r cases, in turn, produce 2”2 mutually independent combinations of
complementary boundary constraints, one of which must be introduced in order for the
total number of unknowns to become equal to the total number of equations.

Special cases of these complementary boundary constraints being assigned at only one of
the two opposite ends are easily handled in the present approach. These “special” cases
permit us to prescribe arbitrary boundary conditions at each of the four edges independent
of one another, and thus constitute the general procedure for solving the most general form
of boundary-value problems. This is in contrast to the more “general” case, where
assignment of same complementary boundary constraints on two opposite ends proves to
be restrictive.

Such specific cases of lamination as antisymmetric angle-ply, symmetric angle-ply and
general cross-ply, such particular case of loading as uniformly distributed transverse
periodic loading and free vibration, and such specific case of geometry as a rectangular
plate, can be obtained as special cases of the above. Six sets of boundary conditions are used
to illustrate the present method for derivation of complementary solutions. In addition, this
method is shown to reproduce the available boundary-continuous solutions for
antisymmetric cross-ply plates and doubly curved shells with SS3-type simply supported
boundary conditions and antisymmetric angle-ply plates with SS2 type simply supported
boundary conditions.

Opverall, this investigation provides complete Fourier solutions to laminated plate/shell
boundary-value problems in the frequency domain that have never been attempted by
earlier investigators. Although the method is illustrated here using a set of example
problems pertaining to thin arbitrarily laminated anisotropic doubly curved and flat panels,
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it is equally applicable to their thick shell counterparts, such as those based on higher order
shear deformation theory (HSDT). This generalized double Fourier series approach has, as
a first step, been applied by Kabir and Chaudhuri [20], and Chaudhuri and Kabir [19, 18]
to the analysis of thin cylindrical and doubly curved isotropic and cross-ply panels, and also
to thick cross-ply doubly curved panels [22], subjected to symmetrical (with respect to
panel central lines) boundary conditions. Numerical results for thin and thick laminated
anisotropic doubly curved and flat panels, computed using the present solutions, are
currently under way at the University of Utah, and will be reported in a forthcoming paper.
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APPENDIX A: ILLUSTRATION OF PROCEDURE

The following will illustrate the procedure of (partial) differentiation of the assumed
double Fourier series, given by equations (6, 7), in the presence of “ordinary” discontinuities
(resulting from the above hypothesis) for the general (or mixed) types of prescribed
boundary conditions, which will be assumed identical at two opposite edges. The
generalization of arbitrary (i.e., unsymmetric with respect to the centerlines of the panels)
mix of boundary conditions will also be investigated in this study.
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(0,1) for m = odd,
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(1,0) for m = even.

The remaining partial derivatives can be obtained by termwise differentiation.
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X co8(0uX1) + Y. Y (— o U + diyym + bindm) cOS(o,x1) COS( B, 2),

mn
m=1n=1

0<x;<a 0<x,<h, (A3d)
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“522)2 (x1, x2) =

1 12 z 1
2CGots Y Cimcos(nXx) + {— BrUioy + 5 (Cioyn + dEo%)}COS(ﬁMz)
m=1 n=1

+ Z Z (— BrUR. + Cimyn + dim0,) cOs (o, x1) c0S(B,x2), 0<x; <a, 0<x, <D,

imn

u?), (x1, x2) = i, (x1, x,) can be obtained by termwise differentiation,

1 & 1, ,
“2,21)111(X1, X,) = azo +3 Z ah,cos(faxs) + Y |:“m{“m Uiy — E(aio“/m + ﬁiofsm)}

o0 o0
+a£-’oym+b;bém}cos(ocmx1)+ Yo [am{om UL — (dim + bindm)}

m=1n=1
+ d}yym + biyd,] cos(o,x1)cos(fpx2), 0<x;<a, 0<x,<h,
(A3f)
2) 1 < g pRue L, /
Ui5pp,(X1, X2) = + Z Cim €OS(0,,X 1) + Z B s Ba 10n_§(ci0yn+di05n)
1 o0 o0
+ E(C:,O’Vn + d:/O 5n:| Cos(ﬂnXZ) + Z z [ﬁﬁ{ﬁn Uirz,,)n - (C;m’))n + dlmén)}
m=1n=1

+ Cinn + diy0,] cOs(0t,X1) cOS(fuxs), 0<x; <a, 0<x, <b,

(A3g)
”5’,21)122(-’61: X,) = ug,zz)zu(xl, X,) = ug,z1)212(x1, X,) = ui,zz)1z1(x1a X,)
=—3 Z o ClmCOS(OC xl A5 Z ﬂzb;ncos(ﬂ X2)+ Z Z [{amﬂz iyzn)n
m=1n=1
- ﬁf(a:n’ym + b:ném) - O‘rzn(dmyn + d:mén)] COS(OCmXI)COS(ﬂnXZ),
0<x;<a 0<x,<h, (A3h)
uP(xy, x5) = Y. Y, U sin(o,x;)cos(f,xz), 0<x;<a, 0<x,<bh, (Ada)
m=1n=0
(3) [ S @ 1 z 1 Z
u;) (X1, X2) =3 %o e + Z o Ui + 2(€i0)’m + fi00m) ¢ €OS(%y X 1) + Y., €incos(f,x2)
m= n=1

o e
+ z Z (OC U(S) + e_inym +ﬁn5m)COS(OCmX1) Cos(ﬁnXZ)s 0 < X1 < a, 0 < X2 < b,

mn
m=1n=1



308 R. A. CHAUDHURI

U (x, x2)=— Y Y BUL) sin(o,x)sin(fxz), 0<x; <a, 0<x,<b,
m=1n=1 (A4C)
1 00 o0 00
u( ) xls XZ) = 5 z Sil’l(OCXl) + z z ( ﬁz Ufi,)n + elm?n +f;m n) Sin(amxl) COS(BnXZ)s

m=1n=1

O<xi<a 0<x,<b (A4d)

ul®) 4 (xq, X2) = 4—1‘51'0 - mi:: o Ul + %“rzn(éio”/m + fi00m) — % (€i07m + fi0Om)] COS (24X 1)
% 2 &1y COS(BuX2) — mzl nzl [om U + 0z (Cinm + finOm)
— (€inVm +7i,,(5m)] cos(tt,X1)cos(fuxs), 0<x;<a, 0<x,<b (Ade)
531)22(x1, X,) = 2) ,(x1, X)) = uE )1 (X1, X2) % i Oy € COS (0 X 1)
5 3 Bicos ) = ¥ Y TR US = tnleita +ind
+ BE@inym + finOm)] COS(0mX 1) cOS(BuX2), 0<x; <a, 0<x, <h (A4f)

3
”E,z)zzz(xla X;) =

ey sin (0o, x,) + Z z [BrUS) — Ba(€imyn + fin0n)

1 m=1n=1

N =
3
HMS

+ €imn + fimOul sin(o,x1) cos(f,x,), 0<x; <a, 0<x, <b. (Adg)

The remaining partial derivatives can be obtained by termwise differentiation.

u®(xy, x,) Z Z U™ cos(o,xq)sin(B,x,), 0<x;<a, 0<x,<b, (AS5a)

mn

m=0n=0
Ut (xq, x5) = — Z Z o, U sin (o, xq)sin(B,x,), 0<x; <a, 0<x,<b, (ASb)
m=1n=1

1 _
( (Xl, XZ) 4g10 + Z glm COS(OC xl + Z (B Ulmn + g_ioyn + hioén) Cos(ﬂnXZ)
=1

o0

+ Z B UL 4+ g vy + hipyd,) cOS(0m X 1) COS(fnXs),

imn
=1 n*l

0<x,<a 0<x,<bh, (A5c)
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(4)
Ml 11 XI,XZ

Z ln ﬁ X2 + Z Z ( On Ufi)n +g;n"l)m + h:’ném)cos(amxl) Sin(ﬁnXZ);

m=1n=1

NIP—‘

0<x;<a 0<x,<b (ASd)

Z Sin(ﬂnXZ) + Z Z [O(m Uii)n - O(m(gmym + h:ném)

m=1n=1

l\)l'—

(4
u; 1111(x1’ X2)

+ g m + Wi om] cos(a,xy)sin(B,x,), 0<x; <a, 0<x,<bh (ASe)
f41)12(x19 Xp) = ”541)21()61» X3) = ”i42)11(x1> X)) =—3 Z O Gim COS (0 X 1)
1 o0 00 o0 , , _ _
+ E z ﬂngm COsS an2 Z Z [amﬁn ii)n - ﬁn(gin’Vm + hiném) + OC51(gimVVI + himén)]
n=1 m=1n=1
cos(a,X1)cos(Buxz), 0<x; <a, 0<x;<b (ASF)

1._ 12 _ ® 1 _ _
ugj‘.z)zz(xls X3) = Zg_io + 5 Y. ZimCos(dtmXy) — Y. (B UﬁéL + 3 Bi (Zio7n + hiody)
m=1

1 0 o0 ~ _ _
2(g107n + h105 )] Cos ﬁ Xz Z Z [ﬁn Ui:tn)n + Bf(glm’yn + himén) + EimVn
m=1n=1
+ R0, €08(ctn 1) cOS(Baxs), 0<x;<a, 0<x,<bh (A5g)

The remaining partial derivatives of u{*(x;, x,) can be obtained by termwise differentiation.

APPENDIX B: BOUNDARY FOURIER COEFFICIENTS

The boundary Fourier coefficients, referred to in the text, are defined as follows:

_ 4 (b
(@in; Din) = ab {i uﬁ”(a, X;) — té”(O, xz)} sin(f,x,) dx,, (Bla, b)
JO
- 4 (?
(5in; bin) = % {+ uflfl(a XZ) - Ml 11 0 X2 }Sll’l ﬁnXZ)dXZD (BlC, d)
JO
_ 4 (e
(Cims dim) = ab {i uﬁ“(xb b) — “El)(xh 0)} sin(o,x1) dxy, (Ble, f)
ab |,
- 5 4 [ ) )
(Cims dim) = ab {+ u;, 22(x1, b) — Ui ss (X1, }SIH(amxl)dxla (Blg, h)

JO
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4
(eimfin)_%

.74
(einsfin) - Clb

oz, 4
(gima hlm) - ab

s hoy= &
(glm7 lm) ab

(@ i) = -
(b = |
(i ) =
(e i) =
i fi) =+
(€lms fim) —%
(g i) =
(g ) =

R. A. CHAUDHURI

rb
3
{£ u(a, x;) —
JO

rb

{+ ul (@, x;) —
JO

ra

JO

ra

JO
rb
{+ u?)(a, x;) — uf?
JO
rb
(£ “le)u(a’ Xz) —
JOo

ra

{+ uP)(xy, b) — u?)
JO
ra

{£ ”g,zz)zz(xlsb) -
JO
ra

(& s, B — )
JO
ra

(£ ui),,(x1,b) —
JO
rb

{+ uM(a, x5) — u
JO
rb

£ “?1)11(0” X3) —
JO

{+ u®(xq, b) — u

e

(3) 0 Xa }COS ﬁ xZ)dXZ,

u; 11(0’ Xz)} cos(fB,x,)dx,,

4) xl, 0)} Cos(o(mxl) dxl,

(+ u(4) L (X1 )_”542)2 (x4, 0)} sin(or,xq) dxy,

O XZ)} COS ﬁ X2 dXz,

u'®
1 111

(0, x,)} cos(f,x5) dx,,
(x1, 0)} cos(a,,x 1) dxy,
(222(x1, 0)} cos (o, x1)dxy,

)(x1, 0)} sin(o,xq) dxy,

u3

u;>) 55 (x1, 0)} sin(at,, x 1) dxy,

0 Xz)} sin(f3,x5) dx,,

1111(0 X2 }sm Buxz)dx,.

(B1i,j)

(B1k, )

(B1m, n)

(Blo, p)

(B2a, b)

(B2¢, d)

(B2e, f)

(B2g, h)

(B2i,])

(B2k, 1)

(B2m, n)

(B2o0, p)

The non-zero boundary displacements and their derivatives for symmetrically placed
boundary conditions are given as follows:

{ulV(0, x,);

(U(a X )}

- Bin) sin(f,x2),

(B3a, b)
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a X _ _ = .

{10, x2); ul} (4, x2)} = 1 Y (F din — bi)sin(f,x5),
(1) . 4,(1) b & T = 7 :

{”i (x1, 0); u; (x4, b)} = 4 Z (F Cim — dim) sin (0, 1),

b & =
{u z(xla > 122(x17 )}:Z Z ($C=lm_d )SIH(OC xl)

W0, 5@ 2} = Y (F e~ fucos(fa),
n=0
(20, @ xa)} = X (F 8= ) cos(fuva)

b
{u:'4)(x19 O)s u§4)(x17 b)} = Z

b & _ _
{ul 22(X1, 5 ifl.2)2(x15 b)} = Z Z, (+ 8im — htm) COS(OCmXI),
Z (1 a;’n - b:n) COS(ﬂHXZ)a

{u(z)(O X,); u(z)(a X,)} =

(W10, x2); u?) (@, X)) = (F ain — i) cOS(fnx2),

-bl&
D18

n=0

p ®
{u(z) (x4, 0); u 2(xy, b)) = 1 Y (F Cim — di) €OS (X 1),
m=0
b < — " 4
£22)22(x17 B} “i"zz)zz(xla b)} = Z Z (+ Cim — dtm) COS(Omel),
m=0
b & - / :
{u) (x1, 0); u)(xy, b)} = 2 Y. (F €im — fim) sin (e X1),
m=0

(F €l — fim) SI (0 X 1),
0

NI~
3
1M s

()5, (x1, 0); ul),, (xq, b)) =

{u(4) (09 XZ); uif‘l) ((l, Xz)} = (1 g;n - h:n) Sin(ﬁnXZ)a

0

Al
N

n

-bl&
=
1]
b

(F &in — hin) sin(f,x2).

{”541)11 0, x,) »”g 1)11(a X))} =

311

(B3c, d)

(B3e, )

(B3g, h)

(B34, j)

(B3k, 1)

(B3m, n)

(B30, p)

(B4a, b)

(B4c, d)

(Bde, f)

(B4g, h)

(B4i,j)

(B4k, 1)

(B4m, n)

(B4o, p)
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APPENDIX C: NON-ZERO COEFFICIENTS FOR CLT-BASED FORMULATION

The non-zero coefficients, for a CLT-based formulation, are as furnished below

All A12 A22 All A12 A16 A26
= — | — 2 e b - — —_, b = b = —{——’
433 <R% T RER TR =g bR T = et

A12+A22 311=_<ﬂ Bll E_'_ 312 >

b =75 ) + — ,
27 R, R, R, R R, R/R,

bos— (Ao Bie  Bie As  Biss | Bi
o R, "R "R, R, RR, R,

Ay By Bis  Azs Bie st
byy = — [ 22°
321 <R1 +R1R2+ R? TR, R, + RZ te R,

Ay By A By, By
by, = —+—5+—" , =4 Ly
322 <R1 + R% + RZ +R1R2 C1111 11 —+ Rl

B D
Cr112 = 2416 + 2% + 2¢Big + C%,
1 1

B D B
Cr122 = Age + % + 2¢Bee + C% + CzDse; C1211 = A1 + R—l — ¢Byss
1 1

2

By, Bss D B
Ci212=A12 +—5— R, 2+ Age + —— R, ®te R—66 — *Dgs, Cr222 = Aze + R26
1 2
Bis — cDys B, B66 CD66
2111 = Are — By + ——F—, =A,+—>+ A4 — ¢2Dge5
Ca111 16 — CD1g + R, Ca112 12 R, 66 T R1 R, C" Ve

B D

26 66 66

02122:A26+ R +CB26, Cr211 :A66+R—_2CB66_CR—+CZD669
1 2 1

D B
Ca212 = 2456 + 2% — 2¢By6 — ¢ %, C2222 = A2 + %,
2 2 2

Biy By, Bis  Bie B, By
=2l —+—-"), =4 —+—=, =2(—=+-—>2,
s <R1 * R, ca312 R, * R, €332 Ry R,

disi11 = — Bi1, dizii2=—(0BBys + ¢Dy6), dizi22=— Biy,
di3222 = — Bye + ¢Dz6, dy3111 = — Bis + Dy,

dy3112 = — Biy —2Bge + 2¢Dgg, dy3122 = —(3Bag + cDyg), dazaza = — B,
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D D
d31111 = Biy +%, d31112=3316+3%+5D163
1 1

D 2D D
d31122 :B12 +_12+2B66 +ﬁ+2CD66, d31222 :B26 +£+CD267
Rl Rl Rl

D D 2D
d32111:BIG+R_126_CD167 d32112:Blz+R—122 + 2Bg6 + R

66

— 2¢Dgg,
1

D6 D,,
—— =Dy, d33320=Bsy +——

d331220 =3By6 +3 R, R,

e331111 = — D1y,

e3z1112 = — 4D16, 331122 = — 2D15 — 4Dgs, €3312220 = — 4D326, €332222 = — D,

(C1)

where A4;;, B;;, and D;; (i,j = 1, 2, 6) are extensional, coupling, and bending rigidities,
respectively, while A4;; (i, j = 4, 5) denote transverse shear rigidities. The constant, ¢ in
equations (C1) above, represents a correction factor to the conventional classical shallow
shell theory due to Donnell, which is given by

1/1 1
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