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A heretofore unavailable double Fourier series based approach, for obtaining
non-separable solution to a system of completely coupled linear rth order partial di!erential
equations with constant coe$cients and subjected to general (completely coupled) boundary
conditions, has been presented. The method has been successfully implemented to solve
a class of hitherto unsolved boundary-value problems, pertaining to free and forced
vibrations of arbitrarily laminated anisotropic doubly curved thin panels of rectangular
planform, with arbitrarily prescribed (both symmetric and asymmetric with respect to the
panel centerlines) admissible boundary conditions and subjected to general transverse
loading.
Existing solutions such as those due to Navier or Levy are based on the well-known

method of separation of variables. Such solutions represent particular solutions whenever
the method of separation of variables work, and when these particular solution functions
fortuitously satisfy the boundary conditions. For derivation of the complementary solution,
the complementary boundary constraints are introduced through boundary discontinuities
of some of the particular solution functions and their partial derivatives. Such discontinuities
form sets of measure zero.
Various cases of lamination, geometry and dynamic response (forced and free vibrations)

of a class of thin anisotropic laminated shells (curved panels) have been shown to follow
from the above. Six sets of boundary conditions are used to illustrate the present method for
the derivation of complementary solutions. Navier-type solutions whenever available form
special cases of the present general solution.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Many boundary-value problems of mathematical physics, with domains of rectangular
planform, are represented by systems of highly coupled linear partial di!erential equations
(PDE) with constant coe$cients, where the prescribed boundary conditions can also be
quite general. Various subclasses of the general system, such as r"8, 6, 4, 2 are often
encountered in the problems of structural mechanics. For example, a subclass, represented
by a system of completely coupled linear fourth order PDEs with constant coe$cients, can
be treated, without much loss of generality, as a representative of the above. The boundary
conditions in this case may contain at the most third derivatives. The objective of the
present study is to present a general method of solution to a general linear system of
completely coupled PDEs of rth (r"even) order, which is subject to general admissible
0022-460X/02/120261#53 $35.00/0 � 2002 Elsevier Science Ltd.
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(prescribed) boundary conditions up to the order r!1, using double Fourier series, which
may be continuous or discontinuous at an edge. The present study is motivated by the need
to "nd exact (in the limit) double Fourier series solutions to the problems of arbitrarily
laminated thin and thick doubly curved, cylindrical or #at panels (open shells), with
arbitrary boundary conditions.
A detailed literature search (see e.g., reference [1]) reveals that a vast majority of the

existing studies, on obtaining exact solutions are largely restricted to Navier- or Levy-type
particular solutions alone. In these studies, solutions are usually assumed in the form of
a double Fourier series, such that either all four (Navier) or two opposite (Levy-type
solution) boundary conditions are satis"ed a priori. These assumed solutions are then
substituted into the governing partial di!erential equations, which yield a set of a system of
linear albegraic equations in terms of as many unknown Fourier coe$cients for each
combination of m, n, where m and n denote the wave numbers (i.e., number of terms of the
Fourier series). This approach has been successful only in the case of cross-ply and
homogeneous orthotropic/isotropic curved panels or #at plates of rectangular planform
(see references [2, 3]), with the SS3-type simply supported boundary conditions, and
antisymmetric angle-ply rectangular plates with the SS2-type boundary conditions
prescribed at all four edges (Navier) or two opposite edges (Levy). Such solutions are based
on the well-known method of separation of variables, which does not work even for
a symmetric angle-ply plate because of the presence of bending}twisting coupling rigidities,
D

��
and D

��
(see reference [2]), let alone arbitrarily laminated plates and all shells with the

exception of cross-ply curved panels. This is because the variables are, in general, not
separable, and more important, boundary conditions are not satis"ed a priori. The primary
objective of the present investigation is to bridge this long-standing analytical gap.
Chaudhuri [1] recently presented a double Fourier series approach for the solution to

a system of completely coupled linear second order partial di!erential equations (PDE) with
constant coe$cients, satisfying Dirichlet, Neumann and arbitrary (mixed) admissible
boundary conditions. This approach has been applied by Chaudhuri and Abu-Arja [4, 5],
and Chaudhuri and Kabir [6, 7] to solve the FSDT ("rst order shear deformation theory)-
based problems of (1) doubly curved moderately thick panels of antisymmetric angle-ply,
and (2) homogeneous isotropic (metallic) and general cross-ply constructions respectively.
Special cases of #at isotropic and cross-ply panels were also presented by Chaudhuri and
Kabir [8, 9]. The underlying mathematical principle is concerned with well-posedness or
lack thereof of the Fourier-type formulation, and the existence of the resulting series
solution. This kind of ill-posedness can be removed by the addition of mathematical
&&structures'' to the formulation, which, for a system of coupled second order PDEs, is
accomplished through the introduction of certain constraints [1], termed here as the
complementary boundary constraints. However, it is worthwhile to note that the levels of
ill-posedness in the Fourier formulations of systems of coupled fourth or higher order PDEs
are vastly more complex compared to their second order counterpart. Consequently,
signi"cantly more complex mathematical &&structures'' through the introduction of
additional constraints are needed in order to obtain Fourier-type solutions for such
problems, which is the primary objective of the present investigation. Additionally,
although the boundary-discontinuous Fourier series theory has been expounded earlier by
Hobson [10] and Carslaw [11], and the method has been applied by other investigators,
such as Green [12], Winslow [13], and Whitney [14, 15], the criteria determining as to
when the boundary Fourier series are needed or not needed have never been clearly spelled
out. Second and more important, the boundary-discontinuous Fourier method has never
been applied to the problem of a plate/shell subjected to asymmetric (with respect to panel
centerlines) boundary conditions, which along with the general lack of non-separable
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Fourier solution has so far remained an enigma in the literature. A clear exposition of this
important issue for completely coupled systems of rth order PDEs, subjected to completely
coupled general admissible boundary conditions is the subject matter of the present
investigation.
The present study will obtain, in a direct manner, the most general solutions to the

boundary-value problems of a system of completely coupled rth order PDEs, with constant
coe$cients and subjected to completely coupled admissible boundary conditions*a
general self-adjoint linear di!erential system. This study "rst presents a method for
non-separable particular (double Fourier series) solutions. Care is taken of the
discontinuities of the particular functions or their derivatives at the boundary, which will
yield additional unknown coe$cients, i.e., the appropriate boundary Fourier coe$cients,
through introduction of complementary and admissible boundary constraints, so that the
number of equations will "nally become equal to the number of unknown coe$cients.
Various cases of lamination, geometry and dynamic response (forced and free vibrations)

of a class of thin anisotropic laminated shells (curved panels) are shown to follow from the
above. Six sets of boundary conditions are used to illustrate the present method for
derivation of complementary solutions. Navier-type solutions whenever available, are
shown to form special cases of the present general solution.

2. STATEMENT OF THE PROBLEM

We consider the following system of completely coupled rth order (r"1, 2,2) partial
di!erential equations with constant coe$cients representing a linear undamped
elasto-dynamic system:
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for i, j"1, 2,2,N; k, l, m, n,2"1, 2, (1)

where a &,' followed by subscripts k, l, m, n denotes partial di!erentiation with respect to
general (curvilinear) spatial co-ordinates x

�
, x

�
. u�

�
denotes the time-dependent displacement

(including rotation) component, while C�
�
and f
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represent the inertia term and periodic

forcing function, respectively, and are written in the form
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where � and � denote time and angular frequency respectively. It then follows that
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The above operation reduces the linear elasto-dynamic system, given by equation (1) to that
of a boundary-value problem (BVP), to be solved in the frequency domain, in conjunction
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with prescribed boundary conditions given below. In the absence of the periodic forcing
function (i.e., the free vibration case), the BVP is concerned with determination of the
eigenvalues and eigenfunctions. The linear partial di!erential operator, ¸

��
,

(i, j"1, 2,2,N), is de"ned in such a way that (1) its inverse exists and is unique, (2) the
adjoint operator exists, and (3) the Fredholm alternative theorem holds [16]. It follows from
Sobolev's theorem and the homogeneous boundary conditions, which determine the
domain of the operator ¸

��
, when applied at an edge, x

�
"x�

�
, where x�

�
is a constant, can, in

general, take the form
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for �"1, 2,2 r/2 (r"even); i, j"1, 2,2,N; k, l, m,2"p, t, (4)

where p, t denote the directions normal and tangential to the edge, x
�
"constant. For

example, when p"1, t"2 and vice versa. The above are referred to as general or mixed
boundary conditions, where all the unknown dependent variables (i.e., response functions)
and their derivatives are completely coupled. In equations (1) and (4),
a
��
, b

���
, c

����
,2, a� ���

��� , b� �������
,2, are constant coe$cients. For r"even, although the total

number of boundary conditions prescribed at an edge is r/2, the boundary conditions can
contain normal derivatives of order r!1 at the most. The above boundary conditions arise
from a variational principle such that equations (1) and (4) form a self-adjoint di!erential
system.

3. METHOD FOR SELECTION OF PARTICULAR SOLUTION

Since the particular solution depends on the loading, q
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) is "rst expanded in the

form of
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The most general non-separable particular solution to the problem, represented by
equations (1) and (2), is then assumed in the form
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It may be noted that Einstein's summation convention has been used on subscriptsm, n, and
superscript, s, except when &&no sum'' is mentioned.
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for j"1, 2,2,N with �
�
"m�/a, �

�
"n�/b.

Term by term partial di!erentiation of the assumed particular solution functions given by
equations (6, 7) and substitution into the governing partial di!erential equations (1), and
"nally, equating the coe$cients of f ���

��
(x

�
, x

�
) for s"1,2, 4, and i, j"1, 2,2,N, will yield

N(4mn#2m#2n#1) equations for arbitrary m, n in terms of as many unknown Fourier
coe$cients, F ���

���
, s"1,2, 4, and j"1, 2,2,N, which can easily be evaluated. The

assumed solution, given by equations (6, 7), would represent the complete solution,
provided it satis"es the prescribed boundary conditions, as it happens in the case of the
available Navier solutions. However, in most cases of practical interest, the assumed
particular solution would fail to satisfy one or more of the prescribed boundary conditions,
which when satis"ed would provide the complementary solution to the problem under
consideration.

4. METHOD OF DERIVATION OF COMPLEMENTARY SOLUTION

4.1. BOUNDARY CONDITIONS AND THE TOTAL NUMBER OF EQUATIONS

The "rst task here is to identify the total number of equations available from satisfying
the prescribed boundary conditions. In order to accomplish this, the same procedure as
applied to the case of the governing partial di!erential equations will be followed.
Substitution of the assumed particular solution functions given by equations (6, 7) and their
partial derivatives obtained by term-wise di!erentiation (i.e., ignoring the boundary
discontinuities at this point) into the general or mixed type of prescribed boundary
conditions given by equation (4), yields
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Applying the boundary conditions at the edges x
�
"0, a, to equation (8), and equating

the coe$cients of cos (�
�
x
�
) and sin (�

�
x
�
) to zero will yield 4n#2 equations for each

�"1, 2,2, r/2; i"1, 2,2,N; i.e., rN (2n#1) equations for a system of rth order PDEs.
Similar operations at the edges x

�
"0, b will yield rN(2m#1) equations. Therefore, the

total additional equations arising out of satisfying the general or mixed boundary
conditions at the edges will number 2rN (m#n#1).

4.2. COMPLEMENTARY BOUNDARY CONSTRAINTS AND THE ASSOCIATED BOUNDARY

DISCONTINUITIES

For derivation of the complementary solution, the complementary boundary constraints
play as important a role as the (prescribed) admissible boundary conditions. The
complementary boundary constraints enter into the picture through boundary
discontinuities of some of the particular solution functions, assumed in the form of
equations (6, 7) and their partial derivatives. In order for this method to furnish a complete
solution to the type of boundary-value problems given by equations (1}4), 2rN (m#n#1),
additional unknown coe$cients must be furnished by the complementary boundary
constraints. For a system of fourth order completely coupled PDEs, this number reduces to
8N(m#n#1) additional unknown coe$cients. The admissible boundary constraints,
which are equalities, are conjugates of the associated complementary boundary constraints,
which are inequalities. They are selected at an edge in a direction normal to that edge in
order to guarantee the self-adjointness of the corresponding one-dimensional di!erential
system.
The prescription of the associated complementary boundary constraints at an edge

implies that in order for equation (4) to yield the required number of equations at each of
the four edges, not all of the r(r#1)/2 quantities for each i"1, 2,2,N!u���
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, u���
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,2, s"1,2, 42can be permitted to vanish at an edge, x

�
"xN

�
, because

that will reduce equation (4) to identities. Assignment of associated complementary
boundary constraints at an edge results in &&ordinary'' discontinuities of the solution
functions and/or their partial derivatives at that edge. In contrast, prescription of the
admissible boundary constraints dictates that vanishing of some of themmust be permitted,
which includes but is not limited to the prescribed geometric boundary conditions, and
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which must not be regarded as violations of the physics of the problem. Assignment of
admissible boundary constraints at an edge insures continuity of the solution functions
and/or their partial derivatives at that edge. As a "rst step, admissible boundary constraints
are assumed to be absent, and only complementary boundary constraints are present, which
implies that vanishing of both the assumed solution functions and their partial derivatives
of up to (r!1)th order at an edge can be regarded as violations of the physics of the
problem, resulting in &&ordinary'' discontinuities at that edge. In what follows, the procedure
is illustrated for the case of a system of completely coupled second (r"2) and fourth order
(r"4) PDEs, then extended to a system of completely coupled sixth order (r"6) PDEs and
is "nally generalized to the case of rth order.
Winslow [13], following Hobson's [10] lead, discussed the mathematical conditions of

di!erentiation, of functions and their partial derivatives represented by ordinary Fourier
series, in the presence of ordinary discontinuities and has concluded that unless additional
conditions, imposed by term-wise di!erentiation are ful"lled, the hypothetical
representation by Fourier series may not have su$cient generality to satisfy all the required
conditions and furnish a solution. A series obtained by di!erentiating a convergent Fourier
series (here a double Fourier series), u���

�
(x

�
, x

�
), i"1,2,N, s"1,2, 4, given by

equations (6 , 7) is, in general, not convergent; nor is the series so obtained necessarily the
Fourier series corresponding to the particular partial derivative of u���
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); in the problem under investigation, d"d�
��"2 at the most. The partial
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), p"1, 2, are assumed to be Lebesgue integrable in the domain

(0, a)� (0, b) and also, if these have lines of in"nite discontinuity (e.g., Dirac Delta function),
such lines form reducible sets. This is consistent with there being a set of lines of zero
measure at which u���
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), p"1, 2, has no de"nite value. Further details relating to the

discontinuities in the particular solution functions and their "rst partial derivatives are
available in Appendix A of Chaudhuri [1]. Discontinuities of higher derivatives can be
similarly dealt with, and will not be discussed here in the interest of brevity. Let F��� (x
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s"1,2, 4, denote a function, u���
�
(x

�
, x

�
) or any of its derivatives. As an example,
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The half-range double Fourier series expansion for the function and its two "rst partial
derivatives are
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wherein
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complementary boundary constraints (boundary discontinuities) at x
�
"0, xN

�
(xN

�
"a or

b depending on whether p"1 or 2), the two "rst partial derivatives expressed in the form of
equations 10(b, c) and 11(b}e) are given by equations (A1b) and (A1c) in Appendix A with
boundary Fourier coe$cients, aN
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��
, dM

��
, being given by equations (B1a, b) and

(B1e, f), respectively, in Appendix B.
If complementary boundary constraint of the function F��� (x

�
, x

�
) is assigned only at

x
�
"0 (p"1 or 2), then the Fourier coe$cients of its "rst partial derivatives are given as

B���
��

"�
�

A���
��

#

4

ab �





	!F���(0#0, x
�
)
 sin(�

�
x
�
) dx

�
for m, n"1, 2,2,R, (12a)

B���

�

"

2

ab �





	!F���(0#0, x
�
)
 sin(�

�
x
�
) dx

�
for n"1, 2,2,R, (12b)

C���
��

"�
�
A���

��
#

4

ab �
�




	!F��� (x
�
, 0#0)
 sin(�

�
x
�
) dx

�
for m, n"1, 2,2,R, (12c)

C���
�


"

2

ab �





	!F��� (x
�
, 0#0)
 sin(�

�
x
�
) dx

�
for m"1, 2,2,R. (12d)

By identifying F���(x
�
, x

�
) as u���

�
(x

�
, x

�
), it can easily be seen that in the presence of

complementary boundary constraints (boundary discontinuities) at only x
�
"0 (p"1 or 2),

the two "rst partial derivatives expressed in the form of equations 10(b, c) and 11(b}e) are
given by modi"ed equations (A1b) and (A1c) in Appendix A with boundary Fourier
coe$cients, aN

��
"!b�

��
and cN

��
"!dM

��
, being given by equation (B1a, b) and (B1e, f ),
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respectively, in Appendix B. In this case, the "rst terms vanish from the integrands in the
r.h.s. of equations (B1a, b) and (B1e, f ).
If complementary boundary constraint of the function F��� (x

�
, x

�
) is assigned only at

x
�
"xN

�
(xN

�
"a or b depending on whether p"1 or 2), then the Fourier coe$cients of its

"rst partial derivatives are given as

B���
��

"�
�

A���
��

#

4

ab �





	F��� (a!0, x
�
) (!1)�
 sin(�

�
x
�
) dx

�
for m, n"1, 2,2,R, (13a)

B���

�

"

2

ab �





	F���(a!0, x
�
)
 sin(�

�
x
�
) dx

�
for n"1, 2,2,R, (13b)

C���
��

"�
�
A���

��
#

4

ab �





	F��� (x
�
, b!0)(!1)�
 sin(�

�
x
�
) dx

�
for m, n"1, 2,2,R, (13c)

C���
�


"

2

ab �





	F��� (x
�
, b!0)
 sin(�

�
x
�
) dx

�
for m"1, 2,2,R. (13d)

By identifying F��� (x
�
, x

�
) as u���

�
(x

�
, x

�
), it can easily be seen in the presence of

complementary boundary constraint (boundary discontinuities) at only x
�
"xN

�
(p"1 or 2),

the two "rst partial derivatives expressed in the form of equations 10(b, c) and 11(b}e) are
given by modi"ed equations (A1b) and (A1c) in Appendix A with boundary Fourier
coe$cients, aN

��
"b�

��
and cN

��
"dM

��
, being given by equations (B1a, b) and (B1e, f ),

respectively, in Appendix B. In this case, the second terms vanish from the integrands in the
r.h.s. of equations (B1a, b) and (B1e, f ).
Extension of the above to higher partial derivatives of u���

�
(x

�
, x

�
) or all partial derivatives

of u���
�
(x

�
, x

�
), s"2, 3, 4 is straightforward, and hence will not be pursued here any further.

For a system of completely coupled fourth order PDEs subjected to complementary
boundary constraints assigned at both ends in each direction, the additional coe$cients,
aN
��
, b�

��
,2, h�

��
,2, a�

��
, b�

��
,2, h��

��
, de"ned by equations (B1, B2) of Appendix B, number

16N(m#n#1), while the number of equations arising out of satisfying the prescribed
geometric and natural boundary conditions, as noted earlier, equal 8N(m#n#1). This
mismatch will necessitate revision of the previous hypothesis through the introduction of
additional constraints, i.e., the admissible boundary constraints. In the case of two special
cases, where complementary boundary constraint inequalities are enforced at either x

�
"0

or xN
�
, the corresponding opposite ends are assigned the related boundary constraints, and

no such mismatch will occur. It is worthwhile to o!er a formal de"nition of the admissible
boundary constraints. Admissible boundary constraints (and the associated complementary
boundary constraints) refer to the vanishing (and non-vanishing) of certain one-dimensional
beam functions, such as sin(�

�
x
�
) and their normal derivatives. For prescribed geometric

boundary conditions, the admissible boundary constraints are identical to the
corresponding boundary conditions, while for prescribed natural boundary conditions
admissible boundary constraints only imply vanishing of the corresponding second or third
derivatives, which correspond to the moment or shear for a beam (in the case of a fourth
order problem), and not that of a physical quantity, such as moment or shear force of a plate
or shell of rectangular planform.
Generalization of the above to a system of rth (r"even) order completely coupled PDEs

would result in 4rN(m#n#1) boundary Fourier coe$cients, while the number of
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equations arising out of satisfying the boundary conditions, as noted earlier, equal
2rN(m#n#1). Since the assumed particular solution functions are comprised of sin(�

�
x
�
)

or cos(�
�

x
�
) and sin(�

�
x
�
) or cos(�

�
x
�
), vanishing of u���

�
(x

�
, x

�
) at an edge x

�
"xN

�
, will

automatically lead to vanishing of the corresponding tangential derivatives, u���
��	
(x

�
, x

�
),

u���
��		
(x

�
, x

�
),2 at that edge and vice versa. Vanishing of the corresponding normal

derivatives, u���
���
(x

�
, x

�
), u���

����
(x

�
, x

�
),2, is, however, independent of that of the function

itself. The following discussion illustrates the number of admissible boundary constraints
and the associated complementary boundary constraints, which must be satis"ed in order
to produce a solution to the class of boundary-value problems involving completely
coupled second and fourth order PDEs, which is extended to the case of sixth order PDEs,
and is "nally generalized to the case of rth order PDEs.

4.2.1. A system of completely coupled second order PDEs

In the case of a boundary-value problem involving a system of completely coupled
second order PDEs, the following two mutually independent combinations of
complementary boundary constraints are possible, one of which must be introduced in
order for the total number of unknowns to become equal to the total number of equations.
Table 1 summarizes these combinations in the presence of complementary boundary
constraints (boundary discontinuities) at both ends, x

�
"0, xN

�
(xN

�
"a or b depending on

whether p"1 or 2).
Combination (1): u���

�
(x

�
, x

�
) and the associated tangential derivative are not permitted to

vanish at an edge x
�
"constant, which will result in non-vanishing of the single-barred

boundary Fourier coe$cients. Vanishing of u���
���
(x

�
, x

�
) at that edge, that corresponds to

vanishing of the single-primed coe$cients, constitutes satisfaction of an admissible
boundary constraint, and will not constitute a violation of the physics of the problem.

Combination (2): u���
���
(x

�
, x

�
) is not permitted to vanish at an edge x

�
"constant, which

will result in non-vanishing of the single-primed coe$cients. Vanishing of u���
�
(x

�
, x

�
) and

the associated tangential derivative at that edge, that corresponds to vanishing of the
single-barred coe$cients, constitutes satisfaction of an admissible boundary constraint.
Special cases of these complementary boundary constraints being assigned to only one of

the two opposite ends are summarized in Table 2. It may be noted here that these special
cases permit us to prescribe arbitrary boundary conditions at each of the four edges
independent of one another, and thus constitutes the general procedure for solving the most
general form of boundary-value problems. This is in contrast to the former, where the
assignment of same complementary boundary constraints (see reference [1]) on two
opposite ends proves to be restrictive.
TABLE 1

Symmetrically placed complementary and admissible boundary constraints for a second order
PDE at edges x

�
"0, xN

�

Case
Complementary
boundary constraint

Admissible
boundary constraint Comments

1. u
�
O0; u

��	
O0 u

���
"0 Single-primed coe$cients vanish;

Single-barred coe$cients non-zero

2. u
���

O0 u
�
"u

��	
"0 Single-barred coe$cients vanish;

Single-primed coe$cients non-zero



TABLE 2

;nsymmetrically placed complementary and admissible boundary constraints for a second
order PDE at edges x

�
"0, xN

�

Combination
Complementary

boundary constraint
Admissible boundary

constraint Comments

x
�
"0 x

�
"xN

�
x
�
"0 x

�
"xN

�
p"1, t"2, p"2, t"1

1. u
�
O0; u

���
"0 a�

��
"!b�

��
; c�

��
"!d�

��
;

u
��	

O0 g�
��
"!h�

��
; e�

��
"!f �

��
;

u
���

O0 u
�
"u

��	
"0 aN

��
"b�

��
; cN

��
"dM

��
;

eN
��
"fM

��
; gN

��
"h�

��
;

2. u
���

O0 u
�
"u

��	
"0 aN

��
"!b�

��
; cN

��
"!dM

��
;

eN
��
"!fM

��
; gN

��
"!h�

��
;

u
�
O0; u

���
"0 a�

��
"b�

��
; c�

��
"d�

��
;

u
��	

O0 g�
��
"h�

��
; e�

��
"f �

��
.
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4.2.2. A system of completely coupled fourth order PDEs

In the case of a boundary-value problem involving a system of completely coupled fourth
order PDEs, four mutually independent cases of complementary boundary constraints are
possible. Table 3 summarizes these combinations in the presence of complementary
boundary constraints (boundary discontinuities) at both ends, x

�
"0, xN

�
(xN

�
"a or

b depending on whether p"1 or 2). These four cases, in turn, produce the following four
mutually independent combinations of complementary boundary constraints, one of which
must be introduced in order for the total number of unknowns to become equal to the total
number of equations (see also Table 4).

Combination (1): u���
�
(x

�
, x

�
), u���

���
(x

�
, x

�
) are not permitted to vanish at an edge

x
�
"constant, which will result in non-vanishing of the single-barred and single-primed

coe$cients. Vanishing of u���
����
(x

�
, x

�
), u���

�����
(x

�
, x

�
), at that edge, that corresponds to

vanishing of the double-barred and double-primed coe$cients, constitutes satisfaction of
admissible boundary constraints.

Combination (2): u���
�
(x

�
, x

�
), u���

����
(x

�
, x

�
) are not permitted to vanish at an edge

x
�
"constant, which will result in non-vanishing of the single- and double-barred

coe$cients. Vanishing of u���
���
(x

�
, x

�
), u���

�����
(x

�
, x

�
) at that edge, that corresponds to

vanishing of the single- and double-primed coe$cients, constitutes satisfaction of
admissible boundary constraints.

Combination (3): u���
���
(x

�
, x

�
), u���

�����
(x

�
, x

�
) are not permitted to vanish at an edge

x
�
"constant, which will result in non-vanishing of the single- and double-primed

coe$cients. Vanishing of u���
�
(x

�
, x

�
), u���

����
(x

�
, x

�
) at that edge, that corresponds to vanishing

of the single- and double-barred coe$cients, constitutes satisfaction of admissible boundary
constraints.

Combination (4): u���
����
(x

�
, x

�
), u���

�����
(x

�
, x

�
) are not permitted to vanish at an edge

x
�
"constant, which will result in non-vanishing of the double-barred and double-primed

coe$cients. Vanishing of u���
�
(x

�
, x

�
), u���

���
(x

�
, x

�
) at that edge, that corresponds to vanishing

of the single-barred and single-primed coe$cients, constitutes satisfaction of admissible
boundary constraints.
Special cases of these complementary boundary constraints and the four possible

combinations, when assigned at only one of the two opposite ends are summarized in
Tables 5 and 6 respectively. As has been mentioned earlier, these &&special'' cases permit us



TABLE 3

Symmetrically placed complementary and admissible boundary constraints for a fourth order
PDE at edges x

�
"0, xN

�

Case
Complementary

boundary constraint
Admissible

boundary constraint Comments

1. u
�
O0; u

��	
O0; u

�����
"0 Double-primed coe$cients vanish;

u
��		

O0; u
��			

O0 Single-barred coe$cients non-zero

2. u
���

O0;
u
���	

O0; u
����

"u
����	

"0
Double-barred coe$cients vanish;

u
���		

O0 Single-primed coe$cients non-zero

3. u
����

O0; u
����	

O0 u
���

"u
���	

Single-primed coe$cients vanish;
"u

���		
"0 Double-barred coe$cients non-zero

4. u
�����

O0 u
�
"u

��	
"u

��		
Single-barred coe$cients vanish;

"u
��			

"0 Double-primed coe$cients non-zero

TABLE 4

Symmetrically placed complementary and admissible boundary constraints for a fourth order
PDE at edges x

�
"0, xN

�

Combination
Admissible complementary
boundary constraint

Admissible
boundary constraint Comments

1. u
�
O0; u

��	
O0; u

�����
"0; Double-primed and double-

u
��		

O0; u
��			

O0; barred coe$cients vanish;
u
���

O0; u
���	

O0; u
����

"u
����	

"0 Single-primed and single-
u
���		

O0 barred coe$cients non-zero

2. u
�
O0; u

��	
O0; u

�����
"0; Double-primed and single-

u
��		

O0; u
��			

O0; primed coe$cients vanish;
u
����

O0; u
����	

O0 u
���

"u
���	

" Double-barred and single-
u
���		

"0 barred coe$cients non-zero

3. u
���

O0; u
���	

O0; u
����

"u
����	

"0; Double-barred and single-
u
���		

O0; barred coe$cients vanish;
u
�����

O0 u
�
"u

��	
" Double-primed and single-

u
��		

"u
��			

"0 primed coe$cients non-zero

4. u
����

O0; u
����	

O0; u
���

"u
���	

" Single-primed and single-
u
���		

"0; barred coe$cients vanish;
u
�����

O0 u
�
"u

��	
"u

��		
" Double-primed and double-

u
��			

"0 barred coe$cients non-zero

272 R. A. CHAUDHURI
to prescribe arbitrary boundary conditions at each of the four edges independent of one
another, and thus constitutes the general procedure for solving the most general form of
boundary-value problems. This is in contrast to the more &&general'' case, where assignment
of same complementary boundary constraints on two opposite ends proves to be restrictive.

4.2.3. A system of completely coupled sixth order PDEs

In the case of a boundary-value problem involving a system of completely coupled sixth
order PDEs, six mutually independent cases of complementary boundary constraints are



TABLE 5

;nsymmetrically placed complementary and admissible boundary constraints for a fourth order
PDE at edges x

�
"0, xN

�

Case
Complementary boundary

constraint
Admissible boundary

constraint Comments

x
�
"0 x

�
"xN

�
x
�
"0 x

�
"xN

�
p"1, t"2 p"2, t"1

1. u
�
O0;2; u

�����
"0 a�

��
"!b�

��
; c�

��
"!d�

��
;

u
��			

O0 g�
��
"!h�

��
; e�

��
"!f �

��
;

u
�
O0;2; u

�����
"0 a�

��
"b�

��
; c�

��
"d�

��
;

u
��			

O0 g�
��
"h�

��
; e�

��
"f �

��
;

2. u
���

O0;2; u
����

" aP
��
"!b�

��
; cN

��
"!dM

��
;

u
���		

O0 u
����	

"0 eP
��
"!fO

��
; gP

��
"!h�

��
;

u
���

O0;2; u
����

" aP
��
"b�

��
; cP

��
"dO

��
;

u
���		

O0 u
����	

"0 eP
��
"fO

��
; gP

��
"h�

��
;

3. u
����

O0; u
���

"u
���	

a�
��
"!b�

��
; c�

��
"!d�

��
;

u
����	

O0; "u
���		

"0 g�
��
"!h�

��
; e�

��
"!f �

��
;

u
����

O0; u
���

"u
���	

a�
��
"b�

��
; c�

��
"d�

��
;

u
����	

O0; "u
���		

"0; g�
��
"h�

��
; e�

��
"f �

��
;

4. u
�����

O0; u
�
"u

��	
aN
��
"!b�

��
; c�

��
"!dM

��
;

"u
��		

" eN
��
"!fM

��
; gN

��
"!h�

��
;

u
��			

"0;
u
�����

O0; u
�
"u

��	
aN
��
"b�

��
; cN

��
"dM

��
;

"u
��		

" eN
��
"fM

��
; gN

��
"h�

��
.

u
��			

"0;
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possible, one of which must be introduced in order for the total number of unknowns to
become equal to the total number of equations. Table 7 summarizes these cases in the
presence of complementary boundary constraints (boundary discontinuities) at both ends,
x
�
"0, xN

�
(xN

�
"a or b depending on whether p"1 or 2). These six cases, in turn, produce

the following 2���"8 mutually independent combinations of complementary boundary
constraints, one of which must be introduced in order for the total number of unknowns to
become equal to the total number of equations.

Combination (1): u���
�
(x

�
, x

�
), u���

���
(x

�
, x

�
) and u���

����
(x

�
, x

�
) are not permitted to vanish at an

edge x
�
"constant, which will result in non-vanishing of the single-barred, single-primed

and double-barred coe$cients. Vanishing of u���
�����

(x
�
, x

�
), u���

������
(x

�
, x

�
), and u���

�������
(x

�
, x

�
)

at that edge, that corresponds to vanishing of the double-primed, triple-barred and
triple-primed coe$cients, constitutes satisfaction of admissible boundary constraints.

Combination (2): u���
�
(x

�
, x

�
), u���

���
(x

�
, x

�
) and u���

�����
are not permitted to vanish at an edge

x
�
"constant, which will result in non-vanishing of the single-barred, single-primed and

double-primed coe$cients. Vanishing of u���
����
(x

�
, x

�
), u���

������
(x

�
, x

�
), and u���

�������
(x

�
, x

�
) at

that edge, that corresponds to vanishing of the double-barred, triple-barred and
triple-primed coe$cients, constitutes satisfaction of admissible boundary constraints.

Combination (3): u���
�
(x

�
, x

�
), u���

����
(x

�
, x

�
) and u���

������
(x

�
, x

�
) are not permitted to vanish at

an edge x
�
"constant, which will result in non-vanishing of the single-barred,

double-barred and triple-barred coe$cients. Vanishing of u���
���
(x

�
, x

�
), u���

�����
(x

�
, x

�
), and

u���
�������

(x
�
, x

�
) at that edge, that corresponds to vanishing of the single-primed,

double-primed and triple-primed coe$cients, constitutes satisfaction of admissible
boundary constraints.



TABLE 6

;nsymmetrically placed complementary and admissible boundary constraints for a fourth
order PDE at edges x

�
"0, xN

�

Combination
Complementary

boundary constraint
Admissible boundary

constraint Comments

x
�
"0 x

�
"xN

�
x
�
"0 x

�
"xN

�
p"1, t"2, p"2, t"1

1. u
�
O0;2; u

�����
"0; a�

��
"!b�

��
; c�

��
"!d�

��
;

u
��			

O0 u
����

" g�
��
"!h�

��
; e�

��
"!f �

��
;

u
���

O0;2; u
����	

"0; aP
��
"!b�

��
; cP

��
"!dO

��
;

u
���		

O0; eP
��
"!f�

��
; gP

��
"!h�

��
;

u
�
O0;2; u

�����
"0; a�

��
"b�

��
; c�

��
"d�

��
;

u
��			

O0 u
����

" g�
��
"h�

��
; e�

��
"f �

��
;

u
���

O0;2; u
����	

"0; aP
��
"b�

��
; c

��
"d�

��
;

u
���		

O0 eP
��
"fO

��
; gP

��
"h�

��
;

2. u
�
O0;2; u

�����
"0; a�

��
"!b�

��
; c�

��
"!d�

��
;

u
��			

O0; u
���

"u
���	

g�
��
"!h�

��
; e�

��
"!f �

��
;

u
����

O0; u
���		

"0; a�
��
"!b�

��
; c�

��
"!d�

��
;

u
����	

O0; g�
��
"!h�

��
; e�

��
"!f �

��
;

u
�
O0;2; u

�����
"0; a�

��
"b�

��
; c�

��
"d�

��
;

u
��			

O0 g�
��
"h�

��
; e�

��
"f �

��
;

u
����

O0;2; u
���

"u
���	

a�
��
"b�

��
; c�

��
"d�

��
;

u
����	

O0; "u
���		

"0; g�
��
"h�

��
; e�

��
"f �

��
;

3. u
���

O0;2; u
����

" aP
��
"!b�

��
; c

��
"!dO

��
;

u
���		

O0; u
����	

"0 eP
��
"!fO

��
; gP

��
"!h�

��
;

u
�����

O0; u
�
"2 aN

��
"!b�

��
; cN

��
"!dM

��
;

u
��			

"0; eN
��
"!fM

��
; gN

��
"!h�

��
;

u
���

O0;2; u
����

" aP
��
"b�

��
; cP

��
"dO

��
;

u
���		

O0 u
����	

"0 eP
��
"fO

��
; gP

��
"h�

��
;

u
�����

O0; u
�
"2 aN

��
"b�

��
; cN

��
"dM

��
;

u
��		

"0; eN
��
"fM

��
; gN

��
"h�

��
;

4. u
����

O0; u
���

"u
���	

a�
��
"!b�

��
; c�

��
"!d�

��
;

u
����	

O0; "u
���		

"0 g�
��
"!h�

��
; e�

��
"!f �

��
;

u
�����

O0; u
�
"2 aN

��
"!b�

��
; cN

��
"!dM

��
;

u
��			

"0; eN
��
"!fM

��
; gN

��
"!h�

��
;

u
����

O0; u
���

"u
���	

a�
��
"b�

��
; c�

��
"d�

��
;

u
����	

O0; "u
���		

"0 g�
��
"h�

��
; e�

��
"f �

��
;

u
�����

O0; u
�
"2 aN

��
"b�

��
; cN

��
"dM

��
u
��			

"0; eN
��
"fM

��
; gN

��
"h�

��
.
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Combination (4): u���
�
(x

�
, x

�
), u���

�����
(x

�
, x

�
) and u���

������
(x

�
, x

�
) are not permitted to vanish

at an edge x
�
"constant, which will result in non-vanishing of the single-barred,

double-primed and triple-barred coe$cients. Vanishing of u���
���
(x

�
, x

�
), u���

����
(x

�
, x

�
), and

u���
�������

(x
�
, x

�
) at that edge, that corresponds to vanishing of the single-primed,

double-barred and triple-primed coe$cients, constitutes satisfaction of admissible
boundary constraints.



TABLE 7

Symmetrically placed complementary and admissible boundary constraints for a sixth order
PDE at edges x

�
"0, xN

�

Case
Complementary

boundary constraints
Admissible boundary

constraints Comments

1. u
�
O0; u

��	
O0; u

�������
"0 Triple-primed coe$cients vanish;

u
��		

O0; u
��			

O0; Single-barred coe$cients non-zero
u
��				

O0; u
��					

O0

2. u
���

O0; u
���	

O0; u
������

" Triple-barred coe$cients vanish;
u
���		

O0; u
���			

O0; u
������	

"0 Single-primed coe$cients non-zero
u
���				

O0

3. u
����

O0; u
����	

O0; u
�����

"u
�����	

Double-primed coe$cients vanish;
u
����		

O0; "u
�����		

"0 Double-barred coe$cients non-zero
u
����			

O0

4. u
�����

O0; u
����

"u
����	

Double-barred coe$cients vanish;
u
�����	

O0; "u
����		

" Double-primed coe$cients non-zero
u
�����		

O0 u
����			

"0

5. u
������

O0; u
���

"u
���	

Single-primed coe$cients vanish;
u
������	

O0 "u
���		

"u
���			

Triple-barred coe$cients non-zero
"u

���				
"0

6. u
�������

O0 u
�
"u

��	
"u

��		
Single-barred coe$cients vanish;

"u
��			

"u
��				

Triple-primed coe$cients non-zero
"u

��					
"0
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Combination (5): u���
���
(x

�
, x

�
), u���

����
(x

�
, x

�
) and u���

�������
(x

�
, x

�
) are not permitted to vanish

at an edge x
�
"constant, which will result in non-vanishing of the single-primed,

double-barred and triple-primed coe$cients. Vanishing of u���
�
(x

�
, x

�
), u���

�����
(x

�
, x

�
), and

u���
������

(x
�
, x

�
) at that edge, that corresponds to vanishing of the single-barred,

double-primed and triple-barred coe$cients, constitutes satisfaction of admissible
boundary constraints.

Combination (6): u���
���
(x

�
, x

�
), u���

�����
(x

�
, x

�
) and u���

�������
(x

�
, x

�
) are not permitted to vanish

at an edge x
�
"constant, which will result in non-vanishing of the single-primed,

double-primed and triple-primed coe$cients. Vanishing of u���
�
(x

�
, x

�
), u���

����
(x

�
, x

�
), and

u���
������

(x
�
, x

�
) at that edge, that corresponds to vanishing of the single-barred,

double-barred and triple-barred coe$cients, constitutes satisfaction of admissible boundary
constraints.

Combination (7): u���
����
(x

�
, x

�
), u���

������
(x

�
, x

�
) and u���

�������
(x

�
, x

�
) are not permitted to

vanish at an edge x
�
"constant, which will result in non-vanishing of the double-barred,

triple-barred and triple-primed coe$cients. Vanishing of u���
�
(x

�
, x

�
), u���

���
(x

�
, x

�
), and

u���
�����

(x
�
, x

�
) at that edge, that corresponds to vanishing of the single-barred, single-primed

and double-primed coe$cients, constitutes satisfaction of admissible boundary constraints.
Combination (8): u���

�����
(x

�
, x

�
), u���

������
(x

�
, x

�
) and u���

�������
(x

�
, x

�
) are not permitted to

vanish at an edge x
�
"constant, which will result in non-vanishing of the double-primed,

triple-barred and triple-primed coe$cients. Vanishing of u���
�
(x

�
, x

�
), u���

���
(x

�
, x

�
), and

u���
����
(x

�
, x

�
) at that edge, that corresponds to vanishing of the single-barred, single-primed

and double-barred coe$cients, constitutes satisfaction of admissible boundary constraints.
Special cases of these complementary boundary constraints being assigned at only one of

the two opposite ends are summarized in Table 8. As has been mentioned earlier, these



TABLE 8

;nsymmetrically placed complementary and admissible boundary constraints for a sixth order
PDE at edges x

�
"0, xN

�

Case
Complementary boundary

constraint
Admissible boundary

constraint Comments

x
�
"0 x

�
"xN

�
x
�
"0 x

�
"xN

�
p"1, t"2 p"2, t"1

1. u
�
O0;2; u

�������
"0; a���

��
"!b���

��
; c���

��
"!d���

��
;

u
��					

O0; g���
��

"!h���
��
; e���

��
"!f ���

��
;

u
�
O0;2; u

�������
"0; a���

��
"b���

��
; c���

��
"d���

��
;

u
��					

O0; g���
��

"h���
��
; e���

��
"f ���

��
;

2. u
���

O0;2; u
������

" aPN
��
"!b��

��
; cPN

��
"!dOM

��
;

u
���				

O0; u
������	

"0; ePN
��
"!fOM

��
; gPN

��
"!h��

��
;

u
���

O0;2; u
������

" aPN
��
"b��

��
; cPN

��
"dOM

��
;

u
���				

O0; u
������	

"0; ePN
��
"fOM

��
; gPN

��
"h��

��
;

3. u
����

O0;2; u
�����

"2" a�
��
"!b�

��
; c�

��
"!d�

��
u
����			

O0; "u
�����		

"0; g�
��
"!h�

��
; e�

��
"!f �

��
;

u
����

O0;2 u
�����

"2" a�
��
"b�

��
; c�

��
"d�

��
;

u
����			

O0; u
�����		

"0; g�
��
"h�

��
; e�

��
"f �

��
;

4. u
�����

O0;2; u
����

"2; aP
��
"!b�

��
; cP

��
"!dO

��
;

u
�����		

O0; u
����			

"0; eP
��
"!fO

��
; gP

��
"!h�

��
;

u
�����

O0;2; u
����

"2" aP
��
"b�

��
; cP

��
"dO

��
;

u
�����		

O0; u
����			

"0; eP
��
"fO

��
; gP

��
"h�

��
;

5. u
������

O0; u
���

"2" a�
��
"!b�

��
; c�

��
"!d�

��
;

u
������	

O0; u
���				

"0; g�
��
"!h�

��
; e�

��
"!f �

��
;

u
������

O0; u
���

"2" a�
��
"b�

��
; c�

��
"d�

��
;

u
������	

O0; u
���				

"0; g�
��
"h�

��
; e�

��
"f �

��
;

6. u
�������

O0; u
�
"2" aN

��
"!b�

��
; cN

��
"!dM

��
;

u
��					

"0; eN
��
"!fM

��
; gN

��
"!h�

��
;

u
�������

O0; u
�
"2" aN

��
"b�

��
; cN

��
"dM

��
;

u
��					

"0; eN
��
"fM

��
; gN

��
"h�

��
.
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&&special'' cases permit us to prescribe arbitrary boundary conditions at each of the four
edges independent of one another, and thus constitutes the general procedure for solving
the most general form of boundary-value problems. This is in contrast to a more &&general''
case, where assignment of same complementary boundary constraints on two opposite ends
proves to be restrictive.

4.2.4. A system of completely coupled rth (r"even) order PDEs

In the case of a boundary-value problem involving a system of completely coupled rth
order PDEs, the following r mutually independent cases of complementary boundary
constraints are possible. Table 9 summarizes these cases in the presence of complementary



TABLE 9

Symmetrically placed admissible and complementary boundary constraints for an rth order
(r"even) PDE at edges x

�
"0, xN

�

Complementary boundary constraint Admissible boundary constraint

1. u
�
O0; u

��	
O0; u

��		
O0;2; u

�����2����
"0

u
��			2����

O0
2. u

���
O0; u

���	
O0;2; u

����2����
"u

��	��2����
"0

u
���		2����

O0
3. u

����
O0; u

����	
O0;2; u

���2����
"u

��	�2����
"u

��		�2����
"0

u
����	2����

O0
4. u

�����
O0; u

�����	
O0:2; u

���2����
"u

��	�2����
"u

��		�2����
"0

u
�����	2����

O0
-------- --------
-------- --------

r!2. u
���2����

O0; u
��	�2����

O0;2 u
����

"u
����	

"2"u
����	2����

"0
u
��		�2����

O0
r!1. u

����2����
O0; u

��	��2����
O0 u

���
"u

����	
"2"u

����	2����
"0

r. u
�����2����

O0 u
�
"u

��	
"u

��		
"2"u

��			2����
"0
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boundary constraints (boundary discontinuities) at both ends, x
�
"0, xN

�
(xN

�
"a or

b depending on whether p"1 or 2). These r cases, in turn, produce 2��� mutually
independent combinations of complementary boundary constraints, one of which must be
introduced in order for the total number of unknowns to become equal to the total number
of equations.

Combination (1): u���
�
(x

�
, x

�
), u���

���
(x

�
, x

�
), u���

����
(x

�
, x

�
),2, u���

�������2������
(x

�
, x

�
) are not

permitted to vanish at an edge x
�
"constant, which will result in non-vanishing of the

single-barred, single-primed, double-barred, double-primed,2 (i.e., the "rst half of the
barred and primed) coe$cients. Vanishing of u���

�������2���
(x

�
, x

�
),2, u���

�������2����
(x

�
, x

�
)

at that edge, that corresponds to vanishing of the latter half of the barred and primed
coe$cients, constitutes satisfaction of admissible boundary constraints.
�
Combination: u���

�
(x

�
, x

�
), u���

����
(x

�
, x

�
), u���

������
(x

�
, x

�
),2, are not permitted to vanish at an

edge x
�
"constant, which will result in non-vanishing of all the barred coe$cients.

Vanishing of u���
���
(x

�
, x

�
), u���

�����
(x

�
, x

�
), u���

�������
(x

�
, x

�
),2, at that edge, that corresponds to

vanishing of all the primed coe$cients, constitutes satisfaction of admissible boundary
constraints.
�
Combination: u���

���
(x

�
, x

�
), u���

�����
(x

�
, x

�
), u���

�������
(x

�
, x

�
),2, are not permitted to vanish at an

edge x
�
"constant, which will result in non-vanishing of all the primed coe$cients.

Vanishing of u���
�
(x

�
, x

�
), u���

����
(x

�
, x

�
), u���

������
(x

�
, x

�
),2, at that edge, that corresponds to

vanishing of all the barred coe$cients, constitutes satisfaction of admissible boundary
constraints.
�
Combination (2���): u���

�������2���
(x

�
, x

�
),2, u���

�������2����
(x

�
, x

�
) are not permitted to vanish

at an edge x
�
"constant, which will result in non-vanishing of the latter half of the barred

and primed coe$cients. Vanishing of u���
�
(x

�
, x

�
), u���

���
(x

�
, x

�
), u���

����
(x

�
, x

�
),2, u���

�������2������(x
�
, x

�
) at that edge, that corresponds to vanishing of the single-barred, single-primed,



278 R. A. CHAUDHURI
double-barred, double-primed,2 (i.e., the "rst half of the barred and primed) coe$cients,
constitutes satisfaction of admissible boundary constraints.
Special cases of these complementary boundary constraints being assigned at only one of

the two opposite ends can be dealt with in a manner similar to r"2, 4, and 6, and will not
be presented here in the interest of brevity. As has been mentioned earlier, these &&special''
cases permit us to prescribe arbitrary boundary conditions at each of the four edges
independent of one another, and thus constitutes the general procedure for solving the most
general form of boundary-value problems. This is in contrast to a more &&general'' case,
where assignment of same complementary boundary constraints on two opposite ends
proves to be restrictive.

5. CONSTRUCTION OF THE COMPLETE FOURIER SOLUTION

Substitution of the correct partial derivatives, as obtained above, into the governing
partial di!erential equations (1) and equating the coe$cients of sin(�

�
x
�
) sin(�

�
x
�
), etc.,

will yield the following, for i, j"1, 2,2,N:

a
��
;���

���
!b

���
�
�
;���

���
!b

���
�
�
;���

���
!c

����
�
�
(�

�
;���

���
#aN

��
�
�
#b�

��
�
�
)

!c
����

�
�
(�

�
;���

���
#cN

��
�
�
#dM

��
�
�
)#(c

����
#c

����
)�

�
�
�
;���

���

#d
�����

�
�
	��

�
;���

���
!(g�

��
�
�
#h�

��
�
�
)
#(d

�����
#d

�����
#d

�����
)�

�
�
�
	�

�
;���

���

#�
�
�
�
(gN

��
�
�
#h�

��
�
�
)
#d

�����
	��

�
;���

���
!�

�
(e�

��
�
�
#f �

��
�
�
)


#e
������

	��
�
;���

���
#��

�
(aN

��
�
�
#b�

��
�
�
)!�

�
(aP

��
�
�
#b�

��
�
�
)


!(e
������

#e
������

#e
������

#e
������

)	��
�
�
�
;���

���
!�

�
(eP

��
�
�
#fO

��
�
�
)


#(e
������

#e
������

#e
������

#e
������

#e
������

#e
������

)�
�
�
�
	�

�
�
�
;���

���

#�
�
(aN

��
�
�
#b�

��
�
�
)#

#�
�
(cN

��
�
�
#dM

��
�
�
)
!(e

������
#e

������
#e

������
#e

������
)�

�
	�

�
��
�
;���

���

#gP
��

�
�
#h�

��
�
�



#e
������

	��
�
;���

���
#��

�
(cN

��
�
�
#dM

��
�
�
)!�

�
(cP

��
�
�
#dO

��
�
�
)
"Q���

���

for m, n"1, 2,2,R. (14)

Equation (14) and its counterparts, that correspond to equating the coe$cients of
cos(�

�
x
�
) cos(�

�
x
�
), sin(�

�
x
�
) cos(�

�
x
�
), cos(�

�
x
�
) sin(�

�
x
�
), sin(�

�
x
�
), sin(�

�
x
�
), cos

(�
�

x
�
), cos(�

�
x
�
) and the constant terms to zero, will supply N(4mn#2m#2n#1) linear

algebraic equations. The remaining equations must be supplied by the prescribed boundary
conditions, given by equation (4). Substitution of the appropriate particular solution
functions and their appropriately derived partial derivatives up to (r!1)th order into
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equation (4) will yield

	
�

���

	
�
���

sin(�
�

x
�
) sin(�

�
x
�
)	aN ���

���
;���

���
!b� ���

����
�
�
;���

���
!b� ���

����
�
�
;���

���
!cN ���

�����
�
�
(�

�
;���

���

#aN
��

�
�
#b�

��
�
�
)#(cN ���

�����
#cN ���

�����
)�

�
�
�
;���

���
!cN ���

�����
�
�
(�

�
;���

���
#cN

��
�
�
#dM

��
�
�
)

#dM ���
������

�
�
(��

�
;���

���
!g�

��
�
�
!h�

��
�
�
)#(dM ���

������
#dM ���

������
#dM ���

������
)�

�
�
�
(�

�
;���

���

#eN
��

�
�
#fM

��
�
�
)#(dM ���

������
#dM ���

������
#dM ���

������
)�

�
�
�
(�

�
;���

���
#gN

��
�
�
#h�

��
�
�
)

#dM ����������
�
(��

�
;���

���
!e�

��
�
�
!f �

��
�
�
)
#

	
�

���

	
�
���

cos(�
�

x
�
) cos(�

�
x
�
)	2


#

	
�

���

	
�
���

sin(�
�

x
�
) cos(�

�
x
�
)	2
#

	
�

���

	
�
���

cos(�
�

x
�
) sin(�

�
x
�
)	2


#

	
�

���

sin(�
�

x
�
)	2
#

	
�

���

cos(�
�

x
�
)	2
#

	
�
���

sin(�
�
x
�
)	2


#

	
�
���

cos(�
�
x
�
)	2
#	constant
"0. (15)

For the rectangular domain [0, a]x[0, b], under consideration, application of the boundary
conditions, given by equation (15), at the edges x

�
"0, a and x

�
"0, b, will, on equating the

coe$cients of sin(�
�

x
�
), etc., to zero, yield 4N (2n#1) and 4N (2m#1) linear algebraic

equations, respectively, for a system of fourth order completely coupled PDEs. Finally,
a system ofN(4mn#10m#10n#9) linear algebraic equations in like number of unknown
Fourier coe$cients will be solved. Generalization of the above to the case of the
boundary-value problem involving a system of rth (r"even) order completely coupled
PDEs subjected to satisfaction of admissible boundary conditions/constraints and
associated complementary boundary constraints would result in a system of
N	4mn#2(r#1)(m#n)#2r#1
 linear algebraic equations in like number of unknown
Fourier coe$cients.

6. APPLICATIONS TO CLASSICAL LAMINATION THEORY (CLT) BASED LAMINATED
THIN SHELLS*PROBLEM STATEMENT

A doubly curved panel of rectangular planform is shown in Figure 1, where the reference
surface-parallel orthogonal co-ordinate-axes, x

�
and x

�
, representing the lines of principal

curvature, are placed at the midsurface of the shell, with the x
�
-axis remaining parallel to its

normal. R
�
(i"1, 2) represents the principal radii of curvature of the shell's middle surface.

a and b represent the curved span lengths in the x
�
and x

�
directions, respectively, while

h denotes the total thickness. The thickness of each layer is denoted by h���"�x����
�

!x���
�

�,
in which x����

�
and x���

�
, k"1,2,N, are the distances from the reference surface to the

bottom and top face of each lamina, respectively, with N being the total number of layers.
The simplifying assumptions are: (1) shallowness, (2) transverse inextensibility, (3) classical



Figure 1. A thin laminated double curved panel of rectangular planform.

280 R. A. CHAUDHURI
lamination theory (CLT) and (4) negligibility of geodesic curvatures of the lines of curvature
co-ordinates [17]. Based on these assumptions, generally valid for the case of relatively thin
shells, the equations of equilibrium yield the following system of highly coupled fourth
order partial di!erential equations (see e.g., reference [17]):

b
���

u
���

#b
���

u
���

#c
����

u
����

#c
����

u
����

#c
����

u
����
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����

u
����
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����

u
����
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����

u
����

#d
�����

u
�����

#d
�����

u
�����
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�����

u
�����

#d
����

u
�����

"C
�
!q

�
, i"1, 2, (16a, b)

a
��

u
�
#b

���
u
���

#b
���

u
���

#b
���

u
���

#b
���

u
���

#c
����

u
����

#c
����

u
����

#c
����

u
����

#d
�����

u
�����

#d
�����

u
�����

#d
�����

u
�����

#d
�����

u
�����

#d
�����

u
�����

#d
�����

u
�����

#d
�����

u
�����

#d
�����

u
�����

#e
������

u
������

#e
������

u
������

#d
������

u
������

#e
������

u
������

#e
������

u
������

"C
�
!q

�
,

(16c)

where the constant coe$cients are as provided by equations (C1) in Appendix C, and
C

�
, i"1, 2, 3, is given as

C
�
"!���P

�
#

2P
��

R
�
�u

�
, i"1, 2, C

�
"!��P

�
u
�
, (17a, b)
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wherein both the surface-parallel and transverse inertias are included, and where P
�
, i"1, 2,

is de"ned as

(P
�
, P

�
)"



�
���

�
�����

�����
�

���� (1, x
�
) dx

�
(18)

in which ���� is the density of the kth layer.
The following boundary conditions, prescribed at an edge x

�
"0 or xN

�
, and their

counterparts prescribed at one or both of the other two edges, form a self-adjoint di!erential
system along with the governing PDEs (16).

Simply supported edge.

SS1 : u
�
"M

�
"N

�
"N

�
"0, (19a)

SS2 : u
�
"M

�
"u

�
"N

�
"0, (19b)

SS3 : u
�
"M

�
"N

�
"u

�
"0, (19c)

SS4 : u
�
"M

�
"u

�
"u

�
"0. (19d)

Clamped edge:

C1 : u
�
"u

���
"N

�
"N

�
"0, (20a)

C2 : u
�
"u

���
"u

�
"N

�
"0, (20b)

C3 : u
�
"u

���
"N

�
"u

�
"0, (20c)

C4 : u
�
"u

���
"u

�
"u

�
"0. (20d)

Free edge:

F1 :Q1#M
���

"M
�
"N

�
"N

�
"0, (21a)

F2 :Q1#M
���

"M
�
"u

�
"N

�
"0, (21b)

F3 :Q1#M
���

"M
�
"N

�
"u

�
"0, (21c)

F4 :Q1#M
���

"M
�
"u

�
"u

�
"0. (21d)

Roller-skate edge:

RS1 :Q1#M
���

"u
���

"N
�
"N

�
"0, (22a)

RS2 :Q1#M
���

"u
���

"u
�
"N

�
"0, (22b)

RS3 :Q1#M
���

"u
���

"N
�
"u

�
"0, (22c)

RS4 :Q1#M
���

"u
���

"u
�
"u

�
"0, (22d)
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whereinN
�
, M

�
(i"1, 2, 6) for an arbitrarily laminated anisotropic shell can be expressed in

terms of the midsurface strains and changes in curvature as follows [21]:

N
�
"�A

��
#

B
��

R
�
�u

���
#	A

��
#cB

��

u

���
#�A

��
#

B
��

R
�
�u

���

#	A
��

!cB
��


u
���

#�
A

��
R

�

#

A
��

R
�
�u

�
!B

��
u
����

!2B
��

u
����

!B
��

u
����

, (23)

where A
��
, B

��
, and D

��
(i, j"1, 2, 6) are extensional, coupling, and bending rigidities,

respectively, while A
��
(i, j"4, 5) denotes transverse shear rigidities. N

�
and M

�
can be

obtained from the expressions for N
�
and M

�
, respectively, by replacing 1 by 2, c by !c,

and vice versa.

7. FORCED UNDAMPED VIBRATION OF THIN LAMINATED SHELLS/PLATES

In what follows, the dynamic response of thin laminated shells and plates subjected to
periodic loading is investigated. The following cases are considered to illustrate the present
solution technique.

7.1. AN ARBITRARY LAMINATED THIN ANISOTROPIC DOUBLY CURVED GENERAL PANEL

SUBJECTED TO GENERAL TRANSVERSE PERIODIC LOADING

A curved panel of rectangular planform, but otherwise of arbitrary geometry, is
considered:

R
�
OR

�
, cO0.

7.1.1. Particular solutions

The particular solution functions, which can be initially assumed in the form of
equations (6, 7), will be dependent on the applied loading. Without any loss of generality,
the following distributed periodic loading in equations (16) is assumed [1]:

q
�
(x

�
, x

�
)"q

�
(x

�
, x

�
)"0; q

�
(x

�
, x

�
)"p



#p

�
x
�
/a#p

�
x
�
/b#p

�
x
�
x
�
/(ab), (24)

which is expanded in the form of double Fourier series as follows:

p


"

	
�

���

	
�
���

Q���
���
sin(�

�
x
�
) sin(�

�
x
�
), (25a)

p
�
x
�
/a"

	
�

��


	
�
���

Q���
���
cos(�

�
x
�
) sin(�

�
x
�
), (25b)
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p
�
x
�
/b"

	
�

���

	
�
��


Q���
���
sin(�

�
x
�
) cos(�

�
x
�
), (25c)

p
�
x
�
x
�
/(ab)"

	
�

��


	
�
��


Q���
���
cos(�

�
x
�
) cos(�

�
x
�
), (25d)

in which

Q���
���

"16p


/(��mn) for m, n"1, 3,2,R,

"0 for m, n"2, 4,2,R,
(26a)

Q���
���

"16p
�
/(��mn)� for m, n"1, 3,2,R,

"0 for m, n"2, 4,2,R,
(26b)

Q���
��


"!2p
�
/(�m)� for m, n"1, 3,2,R,

"0 for m"2, 4,2,R,
(26c)

Q���
�
�

"!2p
�
/(�n)� for n"1, 3,2,R,

"0 for n"2, 4,2,R,
(26d)

Q���
���

"!16p
�
/(��mn�) for m, n"1, 3,2,R,

"0 for m, n"2, 4,2,R,
(26e)

Q���
��


"2p
�
/(�n) for m"1, 3,2,R,

"0 for m"2, 4,2,R,
(26f)

Q���
���

"!16p
�
/(��m�n) for m, n"1, 3,2,R,

"0 for m, n"2, 4,2,R,
(26g)

Q���
�
�

"2p
�
/(�n) for n"1, 3,2,R,

"0 for n"2, 4,2,R.
(26h)

Substitution of equations (25, 26) into equation (16) and equating the coe$cients of
sin(�

�
x
�
) sin(�

�
x
�
), etc., will reveal that ;���

���
, ;���

���
,;���

���
, ;���

���
,;���

���
, and ;���

���
are

coupled through the presence of Q���
���

and Q���
���
. Additionally, ;���

���
,;���

���
,

;���
���
,;���

���
,;���

���
and;���

���
are coupled through the presence of;���

���
, and;���

���
. Therefore,

in the case of an arbitrarily laminated anisotropic doubly curved shell, subjected to the
transverse periodic loading, given by equations (2b), (5) and (24}26), the appropriate
particular solution functions will be given by equations (6, 7) with u

�
, j"1,2,N"3.

7.1.2. Complementary solution

The complementary or boundary Fourier solutions to the system of partial di!erential
equations for a thin arbitrarily laminated doubly curved panel given by equation (16),
subjected to various combinations of transverse and in-plane boundary conditions, given by
equations 19(a}d)}22(a}d), prescribed symmetrically or asymmetrically (with respect to
panel centerlines) at opposite edges can easily be obtained using the present approach.
Tables 10, 12 and 14 summarize the non-zero boundary Fourier coe$cients for various
symmetrically prescribed transverse and surface-parallel boundary conditions. Similarly,



TABLE 10

Symmetrically placed complementary and admissible boundary constraints for the transverse displacement u
�

of a thin laminated doubly curved
panel at edges x

�
"0, xN

�

Boundary Complementary Admissible Vanishing coe$cients Non-vanishing coe$cients
condition boundary boundary p"1, p"2, p"1, p"2,
(transverse) constraint constraint t"2 t"1 t"2 t"1

u
�
O0;2; u

�����
"0; a�

��
"b�

��
" c�

��
"d�

��
" aN

��
; b�

��
; cN

��
; dM

��
;

u
��			

O0; g�
��

"h�
��

"0 e�
��

"f �
��

"0 eN
��
; fM

��
O0 gN

��
; h�

��
O0

Free (F):
u
���

O0; u
���	

O0; u
����

" aP
��

"b�
��

" cP
��

"dO
��

" a�
��
; b�

��
; c�

��
; d�

��
;

u
���		

O0 u
����	

"0 eP
��

"fO
��

"0 gP
��

"h�
��

"0 g�
��
; h�

��
O0 e�

��
; f �

��
O0

u
�
O0;2; u

�����
"0; a�

��
"b�

��
" c�

��
"d�

��
" aN

��
; b�

��
; cN

��
; dM

��
;

u
��			

O0; g�
��

"h�
��

"0 e�
��

"f �
��

"0 eN
��
; fM

��
O0 gN

��
; h�

��
O0

Roller-skate (RS):
u
����

O0; u
���

"u
���	

a�
��

"b�
��

" c�
��

"d�
��

" aP
��
; b�

��
; cP

��
; dO

��
;

u
����	

O0; "u
���		

"0; g�
��

"h�
��

"0 e�
��

"f �
��

"0 eP
��
; fO

��
O0 gP

��
; h�

��
O0

u
���

O0; u
���	

O0; u
����

" aP
��

"b�
��

" cP
��

"dO
��

" a�
��
; b�

��
; c�

��
; d�

��
;

u
���		

O0; u
����	

"0; eP
��

"fO
��

"0 gP
��

"h�
��

"0 g�
��
; h�

��
O0 e�

��
; f �

��
O0

Simply supported (SS):
u
�����

O0 u
�
"2 aN

��
"b�

��
" cN

��
"dM

��
" a�

��
; b�

��
; c�

��
; d�

��
;

"u
��			

"0 eN
��

"fM
��

"0 gN
��

"h�
��

"0 g�
��
; h�

��
O0 e�

��
; f �

��
O0

u
����

O0; u
���

"u
���	

a�
��

"b�
��

" c�
��

"d�
��

" aP
��
; b�

��
; cP

��
; dO

��
;

u
����	

O0; "u
���		

"0; g�
��

"h�
��

"0 e�
��

"f �
��

"0 eP
��
; fO

��
O0 gP

��
; h�

��
O0

Clamped (C):
u
�����

O0 u
�
"2 aN

��
"b�

��
" cN

��
"dM

��
" a�

��
; b�

��
; c�

��
; d�

��
;

u
��			

"0 eN
��

"fM
��

"0 gN
��

"h�
��

"0 g�
��
; h�

��
O0 e�

��
; f �

��
O0.
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TABLE 11

;nsymmetrically placed complementary and admissible boundary constraints for the trans-
verse displacement u

�
of a thin laminated doubly curved panel at edges x

�
"0, xN

�

Combination
Complementary

boundary constraint
Admissible boundary

constraint Comments

At x
�
"0 At x

�
"xN

�
At x

�
"0 At x

�
"x�

�
p"1, p"2,

(only) (only) (only) (only) t"2 t"1

u
�
O0;2; u

�����
"0; a��

��
"!b��

��
; c��

��
"!d��

��
;

u
��			

O0; g��
��

"!h��
��
; e��

��
"!f ��

��
;

u
���

O0;2; u
����

" aP
��

"!b�
��
; cP

��
"!dO

��
;

u
���		

O0; u
����	

"0; eP
��

"!fO
��
; gP

��
"!h�

��
;

Free (F):
u
�
O0;2; u

�����
"0; a�

��
"b��

��
; c��

��
"d��

��
;

u
��			

O0; g��
��

"h��
��
; e��

��
"f ��

��
u
���

O0;2; u
����

" aP
��

"b�
��
; cP

��
"dO

��
;

u
���		

O0; u
����	

"0; eP
��

"fO
��
; gP

��
"h�

��
;

u
�
O0;2; u

�����
"0; a��

��
"!b��

��
; c��

��
"!d��

��
;

u
��			

O0; u
���

"u
���	

g��
��

"!h��
��
; e��

��
"!f ��

��
;

u
����

O0; u
���		

"0; a�
��

"!b�
��
; c�

��
"!d�

��
;

u
����	

O0; g�
��

"!h�
��
; e�

��
"!f �

��
;

Roller-skate
(RS):

u
�
O0;2; u

�����
"0 a��

��
"b��

��
; c��

��
"d��

��
;

u
��			

O0 g��
��

"h��
��
; e��

��
"f ��

��
;

u
����

O0; u
���

"u
���	

a�
��

"b�
��
; c�

��
"d�

��
;

u
����	

O0; "u
���		

"0; g�
��

"h�
��

e�
��

"f �
��
;

u
���

O0;2; u
����

" aP
��

"!b�
��
; cP

��
"!dO

��
;

u
���		

O0; u
����		

"0 eP
��

"!fO
��
; gP

��
"!h�

��
;

u
�����

O0; u
�
"2 aN

��
"!b�

��
; cN

��
"!dM

��
;

u
��			

"0; eN
��

"!fM
��
; gN

��
"!h�

��
;

Simply
supported (SS):

u
���

O0;2; u
����

" aP
��

"b�
��
; cP

��
"dO

��
;

u
���		

O0 u
����	

"0 eP
��

"fO
��
; gP

��
"h�

��
;

u
�����

O0; u
�
"2 aN

��
"b�

��
; cN

��
"dM

��
;

u
��			

"0; eN
��

"fM
��
; gN

��
"h�

��
;

u
����

O0; u
���

"u
���	

a�
��

"!b�
��
; c�

��
"!d�

��
;

u
����	

O0; "u
���		

"0; g�
��

"!h�
��
; e�

��
"!f �

��
;

u
�����

O0; u
�
"2 aN

��
"!b�

��
; cN

��
"!dM

��
;

u
��			

"0; eN
��

"!fM
��
; gN

��
"!h�

��
;

Clamped (C):
u
����

O0; u
���

"u
���	

a�
��

"b�
��
; c�

��
"d�

��
;

u
����	

O0; "u
���		

"0; g�
��

"h�
��
; e�

��
"f �

��
;

u
�����

O0; u
�
"2 aN

��
"b�

��
; cN

��
"dM

��
;

u
��			

"0; eN
��

"fM
��
; gN

��
"h�

��
.
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Tables 11, 13 and 15 summarize the non-zero boundary Fourier coe$cients for various
asymmetrically prescribed transverse and surface-parallel boundary conditions. The
following examples are provided for the purpose of illustration.



TABLE 12

Symmetrically placed complementary and admissible boundary constraints for the in-plane
displacements u

�
of a thin laminated doubly curved panel at edges

Comments
Boundary Complementary Admissible
condition boundary boundary Vanishing Non-vanishing
(in plane) constraint constraint coe$cients coe$cients

(a) x
�
"0, xN

�
"a

1 or 3 u
�
O0; u

���
O0; u

���
"0 a�

��
"b�

��
" aN

��
; b�

��
;

g�
��

"h�
��

"0 eN
��
; fM

��
O0

2 or 4 u
���

O0 u
�
"u

���
"0 aN

��
"b�

��
" a�

��
; b�

��
;

eN
��

"fM
��

"0 g�
��
; h�

��
O0.

(b) x
�
"0, xN

�
"b

1 or 2 u
�
O0; u

���
O0 u

���
"0 c�

��
"d�

��
" cN

��
; dM

��
;

e�
��

"f �
��

"0 gN
��
; h�

��
O0

3 or 4 u
���

O0 u
�
"u

���
"0 cN

��
"dM

��
" c�

��
; d�

��
;

gN
��

"h�
��

"0 e�
��
; f �

��
O0.
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7.1.2.1. Example 1: clamped C4 at all four edges. For clamped boundary condition
prescribed at all four edges, the transverse complementary boundary constraints, u

����
O0

and u
�����

O0 at x
�
"0, xN

�
("a), while u

����
O0; and u

�����
O0 at the other two, dictate

that the boundary Fourier coe$cients*aP
��
; b�

��
; eP

��
; fO

��
; a�

��
; b�

��
; g�

��
; h�

��
; cP

��
; dO

��
; gP

��
;

h�
��
; c�

��
; d�

��
; e�

��
and f �

��
*be non-zero (Table 10). Additionally, for the type

4 surface-parallel boundary condition prescribed at all four edges, the surface-parallel
complementary boundary constraints, u

���
O0 and u

���
O0 at two opposite edges, x

�
"0,

xN
�
("a), while u

���
O0 and u

���
O0 at the other two, dictate that the boundary Fourier

coe$cients*a�
��
; b�

��
; g�

��
; h�

��
; a�

��
; b�

��
; g�

��
; h�

��
; c�

��
; d�

��
; e�

��
; f �

��
; c�

��
; d�

��
; e�

��
and

f �
��
2be non-zero (Tables 12, 14). The corresponding non-zero displacements or their

normal derivatives at the edges are then given as follows:

	u���
����

(0, x
�
) ; u���

����
(a, x

�
)
"

a

4

	
�
��


(GaP
��

!b�
��
) sin(�

�
x
�
), (27a, b)

	u���
����

(0, x
�
) ; u���

����
(a, x

�
)
"

a

4

	
�
��


(GeP
��

!fO
��
) cos(�

�
x
�
), (27c, d)

	u���
����

(x
�
, 0) ; u���

����
(x

�
, b)
"

b

4

	
�

��


(GcP
��

!dO
��
) sin(�

�
x
�
), (27e, f)

	u���
����

(x
�
, 0) ; u���

����
(x

�
, b)
"

b

4

	
�

��


(GgP
��

!h�
��
) cos(�

�
x
�
), (27g, h)

	u���
�����

(0, x
�
) ; u���

�����
(a, x

�
)
"

a

4

	
� (Ga�

��
!b�

��
) cos(�

�
x
�
), (27i, j)
��




TABLE 13

;nsymmetrically placed complementary and admissible boundary constraints for the in-plane
displacement u

�
of a thin laminated doubly curved panel at edges

Boundary
condition Complementary Admissible
(in plane) boundary constraint boundary constraint Comments

(a) x
�
"0, xN

�
At x

�
"0 At x

�
"xN

�
At x

�
"0 At x

�
"xN

�
(only) (only) (only) (only)

1 or 3 u
�
O0; u

���
"0 a�

��
"!b�

��
;

u
���

O0 g�
��

"!h�
��
;

2 or 4 u
���

O0 u
�
"u

���
"0 aN

��
"b�

��
;

eN
��

"fM
��
;

2 or 4 u
���

O0 u
�
"u

���
"0 aN

��
"!b

��
;

eN
��

"!fM
��
;

1 or 3 u
�
O0; u

���
"0 a�

��
"b�

��
;

u
���

O0 g�
��

"h�
��
.

(b) x
�
"0, xN

�
At x

�
"0 At x

�
"xN

�
At x

�
"0 At x

�
"xN

�
(only) (only) (only) (only)

1 or 2 u
�
O0; u

���
"0 c�

��
"!d�

��
;

u
���

O0 e�
��

"!f �
��
;

3 or 4 u
���

O0 u
�
"u

���
"0 cN

��
"dM

��
;

gN
��

"h�
��
;

3 or 4 u
���

O0 u
�
"u

���
"0 cN

��
"!dM

��
;

gN
��

"!h�
��
;

1 or 2 u
�
O0; u

���
"0 c�

��
"d�

��
;

u
���

O0 e�
��

"f �
��
.
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TABLE 14

Symmetrically placed complementary and admissible boundary constraints for the in-plane
displacement u

�
of a thin laminated doubly curved panel at edges

Comments
Boundary Complementary Admissible
condition boundary boundary Vanishing Non-vanishing
(in plane) constraint constraint coe$cients coe$cients

(a) x
�
"0, xN

�
"a

1 or 2 u
�
O0; u

���
O0; u

���
"0 a�

��
"b�

��
" aN

��
; b�

��
;

g�
��

"h�
��

"0 eN
��
; fM

��
O0

3 or 4 u
���

O0 u
�
"u

���
"0 aN

��
"b�

��
" a�

��
; b�

��
;

eN
��

"f�
��

"0 g�
��
; h�

��
O0.

(b) x
�
"0, xN

�
"b

1 or 3 u
�
O0; u

���
O0 u

���
"0 c�

��
"d�

��
" cN

��
; dM

��
;

e�
��

"f �
��

"0 gN
��
; h�

��
O0

2 or 4 u
���

O0 u
�
"u

���
"0 cN

��
"dM

��
" c�

��
; d�

��
;

gN
��

"h�
��

"0 e�
��
; f �

��
O0
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�
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) sin(�

�
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�
), i"1, 2. (28g, h)

7.1.2.2. Example 2: free F1 at all four edges. For free boundary conditions prescribed at all
four edges, the transverse complementary boundary constraints, u

�
O0 and u

���
O0 at

x
�
"0, xN

�
("a), while u

�
O0 and u

���
O0 at x

�
"0, xN

�
("b), dictate that the boundary

Fourier coe$cients*aN
��
; b�

��
; e�

��
; fM

��
; a�

��
; b�

��
; g�

��
; h�

��
; cN

��
; dM

��
; gN

��
; h�

��
; c �

��
; d�

��
; e �

��
and

f �
��
2be non-zero (Table 10). Additionally, for the type 1 surface-parallel boundary

condition prescribed at all four edges, the surface-parallel complementary boundary
constraints, u

�
O0 and u

�
O0 at all four edges, dictate that the boundary Fourier

coe$cients*aN
��
; b�

��
; eN

��
; fM

��
; aN

��
; b�

��
; eN

��
; fM

��
; cN

��
; dM

��
; gN

��
; h�

��
; cN

��
; dM

��
; gN

��
and h�

��
*be

non-zero (Tables 12, 14). The corresponding non-zero displacements or their normal
derivatives at the edges are then given as follows:
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TABLE 15

;nsymmetrically placed complementary and admissible boundary constraints for the in-plane
displacement u

�
of a thin laminated doubly curved panel at edges

Boundary
condition Complementary Admissible
(in plane) boundary constraint boundary constraint Comments

(a) x
�
"0, xN

�
At x

�
"0 At x

�
"xN

�
At x

�
"0 At x

�
"xN

�
(only) (only) (only) (only)

1 or 2 u
�
O0; u

���
"0 a�

��
"!b�

��
;

u
���

O0 g�
��

"!h�
��
;

3 or 4 u
���

O0 u
�
"u

���
"0 aN

��
"b�

��
;

eN
��

"fM
��
;

3 or 4 u
���

O0 u
�
"u

���
"0 aN

��
"!b�

��
;

eN
��

"!fM
��
;

1 or 2 u
�
O0; u

���
"0 a�

��
"b�

��
;

u
���

O0 g�
��

"h�
��
.

(b) x
�
"0, xN

�
At x

�
"0 At x

�
"xN

�
At x

�
"0 At x

�
"xN

�
(only) (only) (only) (only)

1 or 3 u
�
O0; u

���
"0 c�

��
"!d�

��
;

u
���

O0 e�
��

"!f �
��
;

2 or 4 u
���

O0 u
�
"u

���
"0 cN

��
"dM

��
;

gN
��

"h�
��
;

2 or 4 u
���

O0 u
�
"u

���
"0 cN

��
"!dM

��
;

gN
��

"!h�
��
;

1 or 3 u
�
O0; u

���
"0 c�

��
"d�

��
;

u
���

O0 e�
��

"f �
��
.
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7.1.2.3. Example 3: simply supported SS2 at all four edges. For simply supported boundary
condition prescribed at all four edges, the transverse complementary boundary constraints,
u
���

O0 and u
�����

O0 at x
�
"0, xN

�
("a), while u

���
O0 and u

�����
O0 at the other two,

dictate that the boundary Fourier coe$cients*a�
��
; b�

��
; g�

��
; h�

��
; a�

��
; b�

��
; g�

��
; h�

��
; c�

��
; d�

��
;

e�
��
; f �

��
; c�

��
; d�

��
; e�

��
; f �

��
2be non-zero (Table 10). Additionally, for the type

2 surface-parallel boundary condition prescribed at all four edges, the surface-parallel
complementary boundary constraints, u

���
O0 and u

���
O0 at two opposite edges,

x
�
"0, xN

�
("a), while u

�
O0 and u

�
O0, at the other two opposite edges, x

�
"0, xN

�
("b),

dictate that the boundary Fourier coe$cients*a�
��
; b�

��
; g�

��
; h�

��
; aN

��
; b�

��
; eN

��
; fM

��
; cN

��
; dM

��
;

gN
��
; h�

��
; c�

��
; d�

��
; e�

��
; f �

��
2be non-zero (Tables 12 and 14). The corresponding non-zero

displacements or their normal derivatives at the edges are then given as follows:
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7.1.2.4. Example 4: clamped C4 at edges x
�
"0, xN

�
("a) and simply supported SS2 at edges

x
�
"0, xN

�
("b). For clamped boundary condition prescribed at two opposite edges,

x
�
"0, xN

�
("a), the transverse complementary boundary constraints, u

����
O0 and

u
�����

O0, dictate that the boundary Fourier coe$cients*aP
��
; b�

��
; eP

��
; fO

��
; a�

��
; b�

��
; g�

��
;

h�
��
2be non-zero (Table 10). Additionally, for the type 4 surface-parallel boundary

condition prescribed at the two opposite edges, x
�
"0, xN

�
("a), the surface-parallel

complementary boundary constraints, u
���

O0 and u
���

O0, dictate that the boundary
Fourier coe$cients*a�

��
; b�

��
; g�

��
; h�

��
; a�

��
; b�

��
; g�

��
; h�

��
2be non-zero (Tables 12, 14).

Likewise, for simply supported boundary condition prescribed at the two opposite edges,
x
�
"0, xN

�
("b), the transverse complementary boundary constraints, u

���
O0 and

u
�����

O0, dictate that the boundary Fourier coe$cients*c�
��
; d�

��
; e�

��
; f �

��
; c�

��
; d�

��
; e�

��
;

f �
��
2be non-zero (Table 10). Additionally, for the type 2 surface-parallel boundary

condition prescribed at the two opposite edges, x
�
"0, xN

�
("b), the surface-parallel

complementary boundary constraints, u
�
O0 and u

���
O0, dictate that the boundary

Fourier coe$cients*cN
��
; dM

��
; gN

��
; h�

��
; c�

��
; d�

��
; e�

��
; f �

��
2be non-zero (Tables 12 and 14).

The corresponding non-zero displacements or their normal derivatives at the edges are then
given as follows:
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7.1.2.5. Example 5: clamped C4 at edge x
�
"0, free F1 at edge x

�
"xN

�
("a), roller-skate

RS3 at x
�
"0 and simply supported SS2 at edge x

�
"xN

�
("b). For clamped boundary

condition prescribed at the edge, x
�
"0, the transverse complementary boundary

constraints, u
����

O0 and u
�����

O0, dictate that the sum of boundary Fourier
coe$cients*aP

��
#b�

��
; eP

��
#fO

��
; a�

��
#b�

��
; and g�

��
#h�

��
2be non-zero. Furthermore, at

the edge x
�
"0, the transverse boundary constraints, u

�
"0 and u

���
"0, dictate that the

boundary Fourier coe$cients*aN
��
("!b�

��
) ; eN

��
("!f�

��
) ; a�

��
("!b�

��
) and

g�
��
("!h�

��
)*be non-zero (Tables 11). For the free boundary condition prescribed at the

edge, x
�
"xN

�
("a), the transverse complementary boundary constraints, u

�
O0 and

u
���

O0, dictate that the sum of boundary Fourier coe$cients*aN
��

!b�
��
;
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eN
��

!fM
��
; a�

��
!b�

��
; and g�

��
!h�

��
*be non-zero. Additionally, at the edge, x

�
"xN

�
("a),

the transverse boundary constraints, u
����

"0 and u
�����

"0, dictate that the boundary
Fourier coe$cients*aP

��
("b�

��
); eP

��
("fO

��
); a�

��
("b�

��
) and g�

��
("h�

��
)2be non-zero

(Table 11). The corresponding non-zero transverse displacements or their normal
derivatives at the edges x

�
"0, xN

�
("a), are then given as follows:

u���
����

(0, x
�
)"!

a

2

	
�
��


aP
��
sin(�

�
x
�
), u���

����
(0, x

�
)"!

a

2

	
�
��


eP
��
cos(�

�
x
�
), (35a, b)

u���
�����

(0, x
�
)"!

a

2

	
�
��


a�
��
cos(�

�
x
�
), u���

�����
(0, x

�
)"!

a

2

	
�
��


g�
��
sin(�

�
x
�
), (35c, d)

u���
�
(a, x

�
)"

a

2

	
�
��


aN
��
sin(�

�
x
�
), u���

�
(a, x

�
)"

a

2

	
�
��


eN
��
cos(�

�
x
�
), (35e, f )

u���
���
(a, x

�
)"

a

2

	
�
��


a�
��
cos(�

�
x
�
), u���

���
(a, x

�
)"

a

2

	
�
��


g�
��
sin(�

�
x
�
). (35g, h)

For the type 4 surface-parallel boundary condition prescribed at the edge x
�
"0, the

surface-parallel complementary boundary constraints, u
���

O0 and u
���

O0, dictate that
the sum of boundary Fourier coe$cients*a�

��
#b�

��
; a�

��
#b�

��
; g�

��
#h�

��
; and

g�
��

#h�
��
2be non-zero. Furthermore, at the edge x

�
"0, the boundary constraints,

u
�
"u

�
"0, dictate that the boundary Fourier coe$cients*aN

��
("!b�

��
); eN

��
("!fM

��
);

aN
��
("!b�

��
); eN

��
("!fM

��
)2be non-zero (Tables 13(a), 15(a)). Likewise, for the type 1

surface-parallel boundary condition prescribed at the edge x
�
"a, the surface-parallel

complementary boundary constraints, u
�
O0 and u

�
O0, dictate that the algebraic sum of

boundary Fourier coe$cients*aN
��

!b�
��
; eN

��
!fM

��
; aN

��
!b�

��
and eN

��
!fM

��
*be non-zero.

Additionally, at the edge x
�
"a, the surface-parallel boundary constraints, u

���
"u

���
"0,

dictate that the boundary Fourier coe$cients*a�
��
("b�

��
); a�

��
("b�

��
); g�

��
("h�

��
) and

g�
��
("h�

��
)2be non-zero (Tables 13(a), 15(a)). Finally, the corresponding non-zero

surface-parallel displacements or their normal derivatives at the edges x
�
"0, xN

�
("a), are

then given as follows:

u���
���
(0, x

�
)"!

a

2

	
�
��


a�
��
cos(�

�
x
�
), u���

���
(0, x

�
)"!

a

2

	
�
��


g�
��
sin(�

�
x
�
), (36a, b)

u���
���
(0, x

�
)"!

a

2

	
�
��


a�
��
cos(�

�
x
�
), u���

���
(0, x

�
)"!

a

2

	
�
��


g�
��
sin(�

�
x
�
), (36c, d)

u���
�
(a, x

�
)"

a

2

	
�
��


aN
��
sin(�

�
x
�
), u���

�
(a, x

�
)"

a

2

	
�
��


eN
��
cos(�

�
x
�
), (36e, f )

u���
���
(0, x

�
)"!

a

2

	
�
��


g�
��
sin(�

�
x
�
), u���

�
(a, x

�
)"

a

2

	
�
��


aN
��
sin(�

�
x
�
). (36g, h)

For the roller-skate boundary condition prescribed at the edge x
�
"0, the transverse

complementary boundary constraints, u
�
O0 and u

����
O0, dictate that the sum of

boundary Fourier coe$cients*cN
��

#dM
��
; g�

��
#h�

��
; cP

��
#dO

��
and g

��
#h�

��
*be

non-zero. Furthermore, at the edge x
�
"0, the transverse boundary constraints,
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u
���

"u
�����

"0, dictate that the boundary Fourier coe$cients*c�
��
("!d�

��
);

e�
��
("!f �

��
); c�

��
("!d�

��
) and e�

��
("!f �

��
)2be non-zero (Table 11). For the simply

supported boundary condition prescribed at the edge x
�
"0, the transverse complementary

boundary constraints, u
���

O0 and u
�����

O0, dictate that the sum of boundary Fourier
coe$cients*c�

��
#d�

��
; e�

��
#f �

��
; c�

��
#d�

��
and e�

��
#f �

��
2be non-zero. Additionally, at

this edge, the transverse boundary constraints, u
�
"u

����
"0, dictate that the boundary

Fourier coe$cients*cN
��
("dM

��
); g�

��
("h�

��
); cP

��
("dO

��
) and gP

��
("h�

��
)*be non-zero

(Table 11). The corresponding non-zero transverse displacements or their normal
derivatives at the edges x

�
"0, b, are then given as follows:

u���
�
(x

�
, 0)"!

b

2

	
�

��


cN
��
sin(�

�
x
�
), u���

�
(x

�
, 0)"!

b

2

	
�

��


g�
��
cos(�

�
x
�
), (37a, b)

u���
����

(x
�
, 0)"!

b

2

	
�

��


cP
��
sin(�

�
x
�
), u���

����
(x

�
, 0)"!

b

2

	
�

��


g
��
cos(�

�
x
�
), (37c, d)

u���
���
(x

�
, b)"

b

2

	
�

��


c�
��
cos(�

�
x
�
), u���

���
(x

�
, b)"

b

2

	
�

��


e�
��
sin(�

�
x
�
), (37e, f )

u���
�����

(x
�
, b)"

b

2

	
�

��


c�
��
cos(�

�
x
�
), u���

�����
(x

�
, b)"

b

2

	
�

��


e�
��
sin(�

�
x
�
). (37g, h)

For the type 3 surface-parallel boundary condition prescribed at the edge x
�
"0, the

surface-parallel complementary boundary constraints, u
���

O0 and u
���

O0, dictate that
the sum of boundary Fourier coe$cients*c�

��
#d�

��
; e�

��
#f �

��
; c�

��
#d�

��
and

e�
��

#f �
��
2be non-zero. Furthermore, at this edge the surface-parallel boundary

constraints, u
�
"u

�
"0, dictate that the boundary Fourier coe$cients*cN

��
("!dM

��
);

gN
��
("!h�

��
); cN

��
("!dM

��
) and gN

��
("!h�

��
)*be non-zero (Tables 13(b), 15(b)).

Likewise, for the type 2 surface-parallel boundary condition prescribed at the edge x
�
"b,

the surface-parallel complementary boundary constraints, u
�
O0; u

�
O0; dictate that the

algebraic sum of boundary Fourier coe$cients*cN
��

!dM
��
; g�

��
!h�

��
; cN

��
!dM

��
and

g�
��

!h�
��
*be non-zero. Additionally, at this edge, the surface-parallel boundary

constraints, u
���

"u
���

"0, dictate that the boundary Fourier coe$cients*c�
��
("d�

��
);

e�
��
("f �

��
); c�

��
("d�

��
) and e�

��
("f �

��
)2be non-zero (Tables 13(b), 15(b)). Finally, the

corresponding non-zero surface-parallel displacements or their normal derivatives at the
edges x

�
"0, b, are then given as follows:

u���
���
(x

�
, 0)"!

b

2

	
�

��


c�
��
cos(�

�
x
�
), u���

���
(x

�
, 0)"!

b

2

	
�

��


e�
��
sin(�

�
x
�
), (38a, b)

u���
���
(x

�
, 0)"!

b

2

	
�

��


c�
��
cos(�

�
x
�
), u���

���
(x

�
, 0)"!

b

2

	
�

��


e�
��
sin(�

�
x
�
), (38c, d)

u���
�
(x

�
, b)"

b

2

	
�

��


cN
��
sin(�

�
x
�
), u���

�
(x

�
, b)"

b

2

	
�

��


gN
��
cos(�

�
x
�
), (38e, f )

u���
�
(x

�
, b)"

b

2

	
� cN

��
sin(�

�
x
�
), u���

�
(x

�
, b)"

b

2

	
� gN

��
cos(�

�
x
�
). (38g, h)
��
 ��
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7.1.2.6. Example 6: clamped C4 at edge x
�
"0, simply supported SS2 at edge x

�
"xN

�
("b),

roller-skate RS3 at x
�
"0 and free F1 at edge x

�
"xN

�
("b). For the combination of

clamped boundary condition prescribed at the edge, x
�
"0, and the simply supported one

at x
�
"xN

�
("a), the transverse complementary boundary constraint, u

�����
O0, is

symmetrically placed, which, consequently, demands that the boundary Fourier
coe$cients*a�

��
, b�

��
, g�

��
and h�

��
*be non-zero. Furthermore, for clamped boundary

condition prescribed at the edge, x
�
"0, the transverse complementary boundary

constraint, u
����

O0, dictates that the sum of boundary Fourier coe$cients*aP
��

#b�
��
and

eP
��

#fO
��
*be non-zero. Additionally, at the edge, x

�
"xN

�
("a), the transverse boundary

constraint, u
����

"0, demands that the boundary Fourier coe$cients*aP
��
("b�

��
) and

eP
��
("fO

��
)*be non-zero (Table 11). The corresponding non-zero transverse displacements

or their normal derivatives at the edges x
�
"0, xN

�
("a), are then given as follows:

	u���
�����

(0, x
�
) ; u���

�����
(a, x

�
)
"

a

4

	
�
��


(Ga�
��

!b�
��
) cos(�

�
x
�
), (39a, b)

	u���
�����

(0, x
�
) ; u���

�����
(a, x

�
)
"

a

4

	
�
��


(Gg�
��

!h�
��
) sin(�

�
x
�
), (39c, d)

u���
����

(0, x
�
)"!

a

2

	
�
��


aP
��
sin(�

�
x
�
), u���

����
(0, x

�
)"!

a

2

	
�
��


eP
��
cos(�

�
x
�
), (39e, f )

u���
���
(a, x

�
)"

a

2

	
�
��


a�
��
cos(�

�
x
�
), u���

���
(a, x

�
)"

a

2

	
�
��


g�
��
sin(�

�
x
�
). (39g, h)

For the combination of type 4 surface-parallel boundary condition prescribed at the edge,
x
�
"0, and the type 2 one at x

�
"0, xN

�
("a), the surface-parallel complementary boundary

constraints, u
���

O0; u
���

O0, dictate that the boundary Fourier coe$cients*a�
��
, b�

��
, g�

��
,

h�
��
, a�

��
, b�

��
, g�

��
and h�

��
*be non-zero. Finally, the corresponding non-zero surface-parallel

displacements or their normal derivatives at the edges x
�
"0, xN

�
("a), are then given as

follows:

	u���
���
(0, x

�
) ; u���

���
(a, x

�
)
"

a

4

	
�
��


(Ga�
��

!b�
��
) cos(�

�
x
�
), i"1, 2, (40a, b)

	u���
���
(0, x

�
) ; u���

���
(a, x

�
)
"

a

4

	
�
��


(Gg�
��
!h�

��
) sin(�

�
x
�
), i"1, 2. (40c, d)

For the combination of roller-skate boundary condition prescribed at the edge, x
�
"0,

and free boundary condition at x
�
"b, the transverse complementary boundary constraint,

u
�
O0, demands that the boundary Fourier coe$cients*cN

��
, dM

��
, gN

��
and h�

��
*be

non-zero. Additionally, for the roller-skate boundary condition prescribed at the edge
x
�
"0, the transverse complementary boundary constraint, u

����
O0, dictates that the sum

of boundary Fourier coe$cients*cP
��

#dO
��
and g

��
#h�

��
*be non-zero. For the free

boundary condition prescribed at the edge x
�
"b, the tranverse boundary constraint,

u
����

"0, dictates that the boundary Fourier coe$cients*cP
��
("dO

��
) and gP

��
("h�

��
)*be

non-zero. Additionally, at the edge x
�
"b, the transverse complementary boundary

constraint, u
���

O0, dictates that the algebraic sum of boundary Fourier
coe$cients*c�

��
!d�

��
and e�

��
!f �

��
2be non-zero. Furthermore, at the edge x

�
"0, the

transverse boundary constraint, u
���

"0, dictates that the boundary Fourier
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coe$cients*c�
��

"!d�
��
; e�

��
"!f �

��
*be non-zero (Table 11). The corresponding

non-zero transverse displacements or their normal derivatives at the edges x
�
"0, b, are

then given as follows:

	u���
�
(x

�
, 0); u���

�
(x

�
, b)
"

b

4

	
�

��


(GcN
��

!dM
��
) sin(�

�
x
�
), (41a, b)

	u���
�
(x

�
, 0); u���

�
(x

�
, b)
"

b

4

	
�

��


(GgN
��

!h�
��
) cos(�

�
x
�
), (41c, d)

u���
����

(x
�
, 0)"!

b

2

	
�

��


cP
��
sin(�

�
x
�
), u���

����
(x

�
, 0)"!

b

2

	
�

��


gP
��
cos(�

�
x
�
), (41e, f )

u���
���
(x

�
, b)"

b

2

	
�

��


c�
��
cos(�

�
x
�
), u���

���
(x

�
, b)"

b

2

	
�

��


e�
��
sin(�

�
x
�
). (41g, h)

For the type 3 surface-parallel boundary condition prescribed at the edge, x
�
"0, the

in-plane complementary boundary constraints, u
���

O0 and u
���

O0, dictate that the sum
of boundary Fourier coe$cients*c�

��
#d�

��
; e�

��
#f �

��
; c�

��
#d�

��
and e�

��
#f �

��
2be

non-zero. Furthermore, at this edge the surface-parallel boundary constraints, u
�
"u

�
"0,

dictate that the boundary Fourier coe$cients*cN
��
("!dM

��
); g�

��
("!h�

��
); cN

��
("!dM

��
)

and g�
��
("!h�

��
)*be non-zero (Tables 13(b), 15(b)). Likewise, for the type

1 surface-parallel boundary condition prescribed at the edge x
�
"b, the surface-parallel

complementary boundary constraints, u
�
O0, and u

�
O0, dictate that the algebraic sum of

boundary Fourier coe$cients*cN
��

!dM
��
; g�

��
!h�

��
; cN

��
!dM

��
and g�

��
!h�

��
*be

non-zero. Additionally, at this edge the surface-parallel boundary constraints,
u
���

"u
���

"0, dictate that the boundary Fourier coe$cients*c�
��
("d�

��
); e�

��
("f �

��
);

c�
��
("d�

��
) and e�

��
("f �

��
)2be non-zero (Tables 13(b), 15(b)). Finally, the corresponding

non-zero surface-parallel displacements or their normal derivatives at the edges x
�
"0, b,

are then given as follows:

u���
���
(x

�
, 0)"!

b

2

	
�

��


c�
��
cos(�

�
x
�
), u���

���
(x

�
, 0)"!

b

2

	
�

��


e�
��
sin(�

�
x
�
), (42a, b)

u���
���
(x

�
, 0)"!

b

2

	
�

��


c�
��
cos(�

�
x
�
), u���

���
(x

�
, 0)"!

b

2

	
�

��


e�
��
sin(�

�
x
�
), (42c, d)

u���
�
(x

�
, b)"

b

2

	
�

��


cN
��
sin(�

�
x
�
), u���

�
(x

�
, b)"

b

2

	
�

��


gN
��
cos(�

�
x
�
), (42e, f )

u���
�
(x

�
, b)"

b

2

	
�

��


cN
��
sin(�

�
x
�
), u���

�
(x

�
, b)"

b

2

	
�

��


gN
��
cos(�

�
x
�
). (42g, h)

7.2. AN ARBITRARILY LAMINATED THIN ANISOTROPIC DOUBLY CURVED GENERAL PANEL

SUBJECTED TO UNIFORM TRANSVERSE PERIODIC LOADING

This is a special case of the example, considered in the preceding section. The transverse
periodic loading in equations (16) is given by

q
�
"q

�
"0, q

�
(x

�
, x

�
)"p



, (43)

where p


is given by equations (25a) and (26a).
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Following an identical procedure as above, an examination of equations (16) reveals that
;���

���
, ;���

���
, ;���

���
, ;���

���
, ;���

���
, ;���

���
are coupled through the presence of Q���

���
and the

corresponding particular solution functions will be necessary and su$cient to furnish the
appropriate particular solution to the system of three PDEs given by equations (16). The
remaining Fourier coe$cients will drop out.
With regard to the complementary solution, the boundary Fourier coe$cients are limited

to aN
��
, b�

��
; a�

��
, b�

��
; cN

��
, dM

��
; c�

��
, d �

��
; aP

��
, b�

��
; a�

��
, b�

��
; cP

��
, dO

��
; c��

��
, d��

��
; g�

��
, h�

��
; g�

��
, h�

��
;

e�
��
, f �

��
; e�

��
, f �

��
; eN

��
, fM

��
; eN

��
, fM

��
; gN

��
, h�

��
; gN

��
and h�

��
(see Tables 10}15). For the six

examples of boundary-value problems considered in section 7.1, only non-vanishing
boundary transverse and surface-parallel displacements and their normal derivatives in
equations (27)}(42) are those that correspond to these boundary Fourier coe$cients. The
remaining boundary Fourier coe$cients will vanish, and so will the corresponding
transverse and in-plane boundary displacements, and their normal derivatives in equations
(27)}(42).
Various special cases of lamination will be considered below.

7.2.1. Antisymmetric angle-ply doubly curved panel

For this type of lamination,

A
��

"A
��

"B
��

"B
��

"B
��

"B
��

"D
��

"D
��

"0. (44)

Substitution of equation (44) into equations (16), followed by an examination of the
reduced equation reveals that ;���

���
is coupled to ;���

���
, ;���

���
, ;���

���
and ;���

���
through the

presence of Q���
���
. In addition,;���

���
,;���

���
,;���

���
and;���

���
are coupled to;���

���
, even though

Q���
���

"0. The corresponding solution functions will be necessary and su$cient to furnish
the appropriate particular solution to the system of three PDEs given by equations (16).
The remaining Fourier coe$cients will drop out. The complementary solutions for various
combinations of prescribed boundary conditions are the same as those for the arbitrarily
laminated case discussed above.

7.2.2. Symmetric angle-ply doubly curved panel

For this lamination,

A
��

"B
��
"0, i, j"1, 2, 6. (45)

Substitution of equation (45) into equations (16), followed by an examination of the
reduced equation will reveal that;���

���
is coupled to;���

���
,;���

���
,;���

���
and;���

���
through the

presence of Q���
���
. In addition,;���

���
,;���

���
,;���

���
and;���

���
are coupled to;���

���
, even though

Q���
���

"0. The corresponding solution functions will be necessary and su$cient to furnish
the appropriate particular solution to the system of three PDEs given by equations (16).
The remaining Fourier coe$cients will drop out. The complementary solutions for various
combinations of prescribed boundary conditions are the same as those for the arbitrarily
laminated case discussed above.

7.2.3. General (unsymmetric) cross-ply doubly curved panel

For this lamination,

A
��

"A
��

"A
��

"B
��

"B
��

"D
��

"D
��

"0. (46)
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Substitution of equation (43) into equations (16), followed by an examination of the
reduced equation reveals that;���

���
,;���

���
,;���

���
and;���

���
are coupled through the presence

of Q���
���
. The corresponding solution functions will be necessary and su$cient to furnish the

appropriate particular solution to the system of three PDEs given by equations (16). The
remaining Fourier coe$cients will drop out.
With regard to the complementary solution, the boundary Fourier coe$cients are limited

to aN
��
, b�

��
; cN

��
, dM

��
; aP

��
, b�

��
; cP

��
, dO

��
; g�

��
, h�

��
; eN

��
, fM

��
; gN

��
, h�

��
; e�

��
, and f �

��
(see

Tables 10}15). For the six examples of boundary-value problems considered in section 7.1,
only one-vanishing boundary transverse and surface-parallel displacements and their
normal derivatives in equations (27)}(42) are those that correspond to these boundary
Fourier coe$cients. The remaining boundary Fourier coe$cients will vanish, and so will
the corresponding transverse and in-plane boundary displacements, and their normal
derivatives in equations (27)}(42).
A solution to this special case, including numerical results, has been presented by

Chaudhuri and Kabir [18] for the SS2-type simply supported boundary conditions
prescribed at all four edges. Furthermore, solutions to the special cases of isotropic doubly
curved and cylindrical panels for the same boundary condition have also been presented by
Chaudhuri and Kabir [19], and Kabir and Chaudhuri [20] respectively.
In addition, it is noteworthy that the assumed double Fourier series solutions,

corresponding to the above Fourier coe$cients will satisfy the SS3-type simply supported
boundary conditions, prescribed at all the four edges and given by equation (19c). Finally,
the present solution, for an isotropic cylindrical panel with the SS3-type simply supported
boundary conditions prescribed at all the four edges, reduces to the corresponding Navier
solution given by Timoshenko and Woinowsky}Krieger [3].

7.3. AN ARBITRARILY LAMINATED THIN ANISOTROPIC RECTANGULAR PLATE

SUBJECTED TO UNIFORM TRANSVERSE PERIODIC LOADING

An arbitrarily laminated anisotropic plate can be treated as a special case of the
corresponding doubly curved panel by substituting

1/R
�
"1/R

�
"c"0. (47)

The uniformly distributed transverse load is given by equations (43), (25a) and (26a).
Substitution of equation (47) into equations (16), followed by an examination of the
reduced equation reveals that ;���

���
and ;���

���
are coupled through the presence of Q���

���
.

Additionally, ;���
���
, ;���

���
, ;���

���
and ;���

���
are coupled. The corresponding solution

functions will be necessary and su$cient to furnish the appropriate particular solution to
the system of three PDEs given by equations (16). The remaining Fourier coe$cients will
drop out. The non-vanishing complementary solutions for various combinations of
prescribed boundary conditions are the same as their counterparts for arbitrarily laminated
doubly curved panels discussed in section 7.2.
The following special cases of lamination will be considered.

7.3.1. Antisymmetric angle-ply rectangular plate

Substitution of equations (44) and (47) into equations (16), followed by an examination of
the reduced equation reveals that ;���

���
is needed because of the presence of Q���

���
.

Additionally, ;���
���

is coupled to ;���
���

and ;���
���
. The corresponding solution functions
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will be necessary and su$cient to furnish the appropriate particular solution to the
system of three PDEs given by equations (16). The remaining Fourier coe$cients will drop
out.
The non-vanishing complementary solutions for various combinations of prescribed

boundary conditions are limited to aN
��
, b�

��
; cN

��
, dM

��
; aP

��
, b�

��
; cP

��
, dO

��
; eN

��
, fM

��
; e�

��
, f �

��
;

g�
��
, h�

��
; g�

��
and h�

��
(see Tables 10}15). For the six examples of boundary-value problems

considered in section 7.1, only non-vanishing boundary transverse and surface-parallel
displacements and their normal derivatives in equations (27)}(42) are those that correspond
to these boundary Fourier coe$cients. The remaining boundary Fourier coe$cients will
vanish, and so will the corresponding transverse and in-plane boundary displacements, and
their normal derivatives in equations (27)}(42).
Whitney and Leissa [21] have shown that the assumed double Fourier series particular

solution functions, corresponding to the aforementioned Fourier coe$cients, will satisfy the
SS2 (S3 according to the nomenclature used by Jones [2]) type boundary conditions, given
by equation (19b).

7.3.2. Symmetric angle-ply rectangular plate

Substitution of equations (45) and (47) into equations (16), followed by an examination of
the reduced equation reveals that ;���

���
and ;���

���
are needed because of the presence of

Q���
���
. The corresponding solution functions will be necessary and su$cient to furnish the

appropriate particular solution to the PDE given by equation (16c). The remaining Fourier
coe$cients will drop out. It may be noted that unlike their counterparts for a shell, the
in-plane displacement components vanish at the reference (middle) surface of
a symmetrically laminated plate, and hence play no role in either the governing PDE or the
boundary conditions.
The non-vanishing complementary solutions (transverse displacements or de#ections

only) for various combinations of prescribed boundary conditions are similar to their
counterparts for symmetric angle-ply doubly curved panels discussed in section 7.2.2.
Solution to this special case, including numerical results, has been presented by Whitney
[15] for the clamped boundary conditions prescribed at all four edges.

7.3.3. General (unsymmetric) cross-ply rectangular plate

Substitution of equations (46) and (47) into equations (16), followed by an examination of
the reduced equation reveals that;���

���
,;���

���
and;���

���
are coupled through the presence of

Q���
���
. The corresponding solution functions will be necessary and su$cient to furnish the

appropriate particular solution to the system of three PDEs given by equations (16). The
remaining Fourier coe$cients will drop out. The complementary solutions for various
combinations of prescribed boundary conditions are same as their doubly curved panel
counterparts discussed in section 7.2.3. In addition, it is noteworthy that the assumed
double Fourier series solutions, corresponding to the above Fourier coe$cients will satisfy
the SS3-type simply supported boundary conditions, prescribed at all the four edges and
given by equation (19c).
In the case of a symmetrically laminated cross-ply plate, the in-plane displacement

components, as expected, vanish at the middle surface. Only ;���
���

is needed because
of the presence of Q���

���
. The present solution for a homogeneous isotropic clamped

plate reduces to its counterpart given by Green [12]. Finally, the present solution for an
isotropic simply supported plate reduces to the corresponding Navier solution (see
reference [3]).
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8. FREE UNDAMPED VIBRATION OF THIN LAMINATED SHELLS/PLATES

Substitution of q
�
"0 into equations (16) renders the problem to that of eigen-BVP. Here

the primary goal is to determine the eigenvalues (natural frequencies) and the corresponding
eigenfunctions (mode shapes). In some sense, this class of solutions is more fundamental
than its forced vibration counterparts, because once the eigenfunctions are known, they can
serve as the bases for the expansion of unknown solution functions for the forced vibration
problem discussed above.

8.1. FREE UNDAMPED VIBRATION OF THIN ARBITRARILY LAMINATED DOUBLY CURVED

PANELS

Case 1. Examination of equations (16) in conjunction with q
�
"0 reveals that ;���

���
,

;���
���
, ;���

���
, ;���

���
, ;���

���
, ;���

���
are coupled, and the corresponding particular solution

functions will be necessary and su$cient to furnish an appropriate particular solution to the
system of three PDEs given by equations (16). The remaining Fourier coe$cients will drop
out. This case is similar to section 7.2 already discussed. The same holds for the
complementary solution.

Case 2. Examination of equations (16) in conjunction with q
�
"0 reveals that an

alternate set of eigenfunctions are also possible. For an arbitrarily laminated doubly curved
panel, ;���

���
, ;���

���
, ;���

���
, ;���

���
, ;���

���
and ;���

���
are coupled, and the corresponding

particular solution functions will be necessary and su$cient to furnish an alternative
particular solution to the system of three PDEs given by equations (16). The remaining
Fourier coe$cients will drop out.
With regard to the complementary solution, the boundary Fourier coe$cients aN

��
,b�

��
;

a�
��
,b�

��
; cN

��
,dM

��
; c�

��
,d�

��
; aP

��
,b�

��
; a�

��
,b�

��
; cP

��
,dO

��
; c�

��
,d�

��
; g�

��
,h�

��
; g�

��
,h�

��
; e�

��
,f �
��
;

e�
��
, f �

��
; eN

��
, fM

��
; eN

��
, fM

��
; gN

��
,h�

��
; gN

��
and h�

��
that correspond to vanishing particular

solutions will automatically be zero (see Tables 10}15). The remaining boundary Fourier
coe$cients and the corresponding transverse and surface-parallel boundary displacements
and their normal derivatives will be non-zero depending on the prescribed boundary
conditions. These are as given by their counterparts discussed in section 7.1.
The following special cases of lamination are considered.

8.1.1. Antisymmetric angle-ply doubly curved panel

Examination of equations (16) in conjunction with q
�
"0 and equation (44) reveals that

two cases are possible, which are similar to their arbitrary lamination counterparts
discussed above (see also section 7.2 for Case 1).

8.1.2. Symmetric angle-ply doubly curved panel

Examination of equations (16) in conjunction with q
�
"0 and equation (45) reveals that

two cases are possible, which are similar to their arbitrary lamination and antisymmetric
angle-ply counterparts discussed above (see also section 7.2 for Case 1).

8.1.3. General (unsymmetric) cross-ply doubly curved panel

Examination of equations (16) in conjunction with q
�
"0 and equation (46) reveals that

four cases are possible. Case 1 is similar to its forced vibration counterpart pertaining to
uniform transverse periodic loading discussed in section 7.2 and has been utilized (see
reference [18] for solution and numerical results for the SS2-type boundary conditions
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prescribed at all four edges). Case 2 involves coupling of;���
���

with;���
���

and;���
���
. Case 3 is

characterized by coupling of ;���
���
with ;���

���
and ;���

���
, while Case 4 involves coupling of

;���
���

with ;���
���

and ;���
���
.

With regard to the complementary solution, the boundary Fourier coe$cients, in the
four cases, are limited to the following (see Tables 10}15):

Case 1. aN
��
,b�

��
; cN

��
,dM

��
; aP

��
,bO

��
; cP

��
,dO

��
; g�

��
,h�

��
; eN

��
,fM
��
; gN

��
,h�

��
; e�

��
and f �

��
.

Case 2. a�
��
,b�

��
; c�

��
,d�

��
; a�

��
,b�

��
; c�

��
,d�

��
; g�

��
,h�

��
; e�

��
, f �

��
; eN

��
, fM
��
; gN

��
and h�

��
.

Case 3. eN
��
,fM
��
; gN

��
,h�

��
; eP

��
, fO
��
; gP

��
,h�

��
; c�

��
,d�

��
; aN

��
,b�

��
; cN

��
,dM

��
; a�

��
and b�

��
.

Case 4. e�
��
,f �
��
; g�

��
,h�

��
; e�

��
, f �
��
; g�

��
,h�

��
; c�

��
,d�

��
; a�

��
,b�

��
; aN

��
,b�

��
; cN

��
and dM

��
.

For the six examples of boundary-value problems considered in section 7.1, only
non-vanishing boundary transverse and surface-parallel displacements and their normal
derivatives in equations (27)}(42) are those that correspond to these boundary Fourier
coe$cients. The remaining boundary Fourier coe$cients will vanish, and so will the
corresponding transverse and in-plane boundary displacements, and their normal
derivatives in equations (27)}(42).

8.2. FREE UNDAMPED VIBRATION OF THIN ARBITRARILY LAMINATED RECTANGULAR

PLATES

Examination of equations (16) in conjunction with q
�
"0 and equation (47) reveals that

two cases are possible. Case 1 is similar to its forced vibration counterpart pertaining to
uniform transverse periodic loading discussed in section 7.3. Both the cases are similar to
their doubly curved shell counterparts discussed in section 8.1.
The following special cases of lamination are considered.

8.2.1. Antisymmetric angle-ply rectangular plate

Substitution of q
�
"0 in conjunction with equations (44) and (47) into equations (16),

followed by an examination of the reduced equation reveals that four cases are possible.
Case 1 is similar to its forced vibration counterpart pertaining to uniform transverse
periodic loading discussed in section 7.3 (Here ;���

���
is coupled to ;���

���
and ;���

���
). Case

2 involves coupling of ;���
���

with ;���
���

and ;���
���
. Case 3 is characterized by coupling of

;���
���

with ;���
���

and ;���
���
, while Case 4 involves coupling of ;���

���
with ;���

���
and ;���

���
.

With regard to the complementary solution, the boundary Fourier coe$cients, in the
four cases, are limited to the following (see Tables 10}15):

Case 1. aN
��
,b�

��
; cN

��
,dM

��
; aP

��
,bO

��
; cP

��
,dO

��
; g�

��
,h�

��
; e�

��
, f �
��
; eN

��
,fM
��
; gN

��
and h�

��
.

Case 2. a�
��
,b�

��
; c�

��
,d�

��
; a�

��
,b�

��
; c�

��
,d�

��
; g�

��
,h�

��
; eN

��
, fM
��
; gN

��
, h�

��
; e�

��
and f �

��
.

Case 3. eN
��
,fM
��
; gN

��
,h�

��
; eP

��
, fO
��
; gP

��
,h�

��
; c�

��
,d�

��
; a�

��
,b�

��
; aN

��
,bM

��
; cN

��
and dM

��
.

Case 4. e�
��
,f �
��
; g�

��
,h�

��
; e�

��
, f �
��
; g�

��
,h�

��
; c�

��
,d�

��
; aN

��
,bM

��
; cN

��
,d�

��
; a�

��
and b�

��
.

For the six examples of boundary-value problems considered in section 7.1, only
non-vanishing boundary transverse and surface-parallel displacements and their normal
derivatives in equations (27)}(42) are those that correspond to these boundary Fourier
coe$cients. The remaining boundary Fourier coe$cients will vanish, and so will the
corresponding transverse and in-plane boundary displacements, and their normal
derivatives in equations (27)}(42).
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8.2.2. Symmetric angle-ply rectangular plate

Substitution of equations (45) and (47) and q
�
"0 into equations (16), followed by an

examination of the reduced equation reveals that two cases of transverse vibration are
possible (it may be noted that transverse and in-plane motions are uncoupled here). Case 1
is similar to its forced vibration counterpart pertaining to uniform transverse periodic
loading discussed in section 7.3. Case 2 involves coupling of ;���

���
and ;���

���
.

With regard to the complementary solution, the boundary Fourier coe$cients, in the two
cases (transverse vibration only), are limited to the following (see Tables 10}15):

Case 1. aN
��
,bM

��
; cN

��
,dM

��
; aP

��
,bO

��
; cP

��
,dO

��
; a�

��
,b�

��
; c�

��
,d�

��
; a�

��
,b�

��
; c�

��
and d�

��
.

Case 2. eN
��
, fM
��
; gN

��
,h�

��
; eP

��
, fO
��
; gP

��
,hO

��
; e�

��
, f �

��
; g�

��
,h�

��
; e�

��
, f �
��
; g�

��
and h�

��
.

For the six examples of boundary-value problems considered in section 7.1, only
non-vanishing boundary transverse displacements and their normal derivatives in
equations (27)}(42) are those that correspond to these boundary Fourier coe$cients. The
remaining boundary Fourier coe$cients will vanish, and so will the corresponding
transverse and in-plane boundary displacements, and their normal derivatives in
equations (27)}(42).

8.2.3. General (unsymmetric) cross-ply rectangular plate

Substitution of equations (46) and (47) and q
�
"0 into equations (16), followed by an

examination of the reduced equation reveals that four cases are possible similar to its
doubly curved counterpart discussed above (Case 1 is similar to its forced vibration
counterpart pertaining to uniform transverse periodic loading discussed in section 7.3).
In the case of a symmetrically laminated cross-ply plate, the in-plane displacement

components, as expected, vanish at the middle surface. Only ;���
���

is non-zero, which are
same as their doubly curved panel counterparts.
The present solution for a symmetrically laminated cross-ply plate directly reduces to

that for a homogeneous orthotropic or isotropic plate without any di$culty.

9. STATIC DEFLECTION OF THIN LAMINATED SHELLS/PLATES

Substitution of C
�
"0 into equations (16) reduces the forced vibration BVPs investigated

in sections 7.1}7.3 to their counterparts. Clearly, the same solutions as are obtained for
various laminations, geometries and boundary conditions considered in sections 7.1}7.3 are
valid here (e���"1), and will not be repeated in the interest of brevity of presentation.

10. SUMMARY AND CONCLUSIONS

A heretofore unavailable double Fourier series based approach, for obtaining
non-separable solution to a system of completely coupled linear rth order partial di!erential
equations with constant coe$cients and subjected to general (completely coupled)
boundary conditions, has been presented. The method has been successfully implemented
to solve a class of hitherto unsolved boundary-value problems, pertaining to free and forced
vibrations of arbitrarily laminated anisotropic doubly curved thin panels of rectangular
planform, with arbitrarily prescribed (both symmetric and asymmetric with respect to the
panel centerlines) admissible boundary conditions and subjected to general transverse
loading.



BOUNDARY CONSTRAINTS 303
Existing solutions such as those due to Navier or Levy are based on the well-known
method of separation of variables. Such solutions represent particular solutions whenever
the method of separation of variables works, and when these particular solution functions
fortuitously satisfy the boundary conditions. The method of separation of variables for
obtaining particular solutions does not work even for a symmetric angle-ply plate because
of the presence of bending}twisting coupling rigidities, let alone arbitrarily laminated plates
and shells with the exception of cross-ply curved panels. This is because the variables are, in
general, not separable, and more important, boundary conditions are not satis"ed a priori.
The present investigation bridges this long-standing analytical gap.
For the derivation of the complementary solution, the complementary boundary

constraints, which are inequalities, play as important a role as the (prescribed) admissible
boundary conditions, which are equalities. The complementary boundary constraints enter
into the picture through boundary discontinuities of some of the particular solution
functions and their partial derivatives. Such discontinuities form sets of measure zero. The
admissible boundary constraints, which are equalities, are conjugates of the associated
complementary boundary constraints, which are inequalities. They are selected at an edge
in a direction normal to that edge in order to guarantee the self-adjointness of the
corresponding one-dimensional di!erential system.
In the most general case, the particular solutions satisfy N (4mn#2m#2n#1)

equations for arbitrary m, n in terms of as many unknown Fourier coe$cients. In order for
this method to furnish a complete solution to the self-adjoint di!erential system given by
equations (1, 4), 2rN (m#n#1) additional unknown (boundary Fourier) coe$cients must
be furnished by the complementary boundary constraints. For a system of fourth order
completely coupled PDEs, this number reduces to 8N(m#n#1) additional unknown
coe$cients.
In the case of a boundary-value problem involving a system of completely coupled rth

order PDEs, r mutually independent cases of complementary boundary constraints are
possible. These r cases, in turn, produce 2��� mutually independent combinations of
complementary boundary constraints, one of which must be introduced in order for the
total number of unknowns to become equal to the total number of equations.
Special cases of these complementary boundary constraints being assigned at only one of

the two opposite ends are easily handled in the present approach. These &&special'' cases
permit us to prescribe arbitrary boundary conditions at each of the four edges independent
of one another, and thus constitute the general procedure for solving the most general form
of boundary-value problems. This is in contrast to the more &&general'' case, where
assignment of same complementary boundary constraints on two opposite ends proves to
be restrictive.
Such speci"c cases of lamination as antisymmetric angle-ply, symmetric angle-ply and

general cross-ply, such particular case of loading as uniformly distributed transverse
periodic loading and free vibration, and such speci"c case of geometry as a rectangular
plate, can be obtained as special cases of the above. Six sets of boundary conditions are used
to illustrate the present method for derivation of complementary solutions. In addition, this
method is shown to reproduce the available boundary-continuous solutions for
antisymmetric cross-ply plates and doubly curved shells with SS3-type simply supported
boundary conditions and antisymmetric angle-ply plates with SS2 type simply supported
boundary conditions.
Overall, this investigation provides complete Fourier solutions to laminated plate/shell

boundary-value problems in the frequency domain that have never been attempted by
earlier investigators. Although the method is illustrated here using a set of example
problems pertaining to thin arbitrarily laminated anisotropic doubly curved and #at panels,
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it is equally applicable to their thick shell counterparts, such as those based on higher order
shear deformation theory (HSDT). This generalized double Fourier series approach has, as
a "rst step, been applied by Kabir and Chaudhuri [20], and Chaudhuri and Kabir [19, 18]
to the analysis of thin cylindrical and doubly curved isotropic and cross-ply panels, and also
to thick cross-ply doubly curved panels [22], subjected to symmetrical (with respect to
panel central lines) boundary conditions. Numerical results for thin and thick laminated
anisotropic doubly curved and #at panels, computed using the present solutions, are
currently under way at the University of Utah, and will be reported in a forthcoming paper.
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APPENDIX A: ILLUSTRATION OF PROCEDURE

The following will illustrate the procedure of (partial) di!erentiation of the assumed
double Fourier series, given by equations (6, 7), in the presence of &&ordinary'' discontinuities
(resulting from the above hypothesis) for the general (or mixed) types of prescribed
boundary conditions, which will be assumed identical at two opposite edges. The
generalization of arbitrary (i.e., unsymmetric with respect to the centerlines of the panels)
mix of boundary conditions will also be investigated in this study.
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The remaining partial derivatives can be obtained by termwise di!erentiation.
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The remaining partial derivatives can be obtained by termwise di!erentiation.
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The remaining partial derivatives of u���
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APPENDIX B: BOUNDARY FOURIER COEFFICIENTS

The boundary Fourier coe$cients, referred to in the text, are de"ned as follows:
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The non-zero boundary displacements and their derivatives for symmetrically placed
boundary conditions are given as follows:
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APPENDIX C: NON-ZERO COEFFICIENTS FOR CLT-BASED FORMULATION

The non-zero coe$cients, for a CLT-based formulation, are as furnished below
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(C1)

where A
��
, B

��
, and D

��
(i, j"1, 2, 6) are extensional, coupling, and bending rigidities,

respectively, while A
��
(i, j"4, 5) denote transverse shear rigidities. The constant, c in

equations (C1) above, represents a correction factor to the conventional classical shallow
shell theory due to Donnell, which is given by

c"
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